Optimizing Variational Problems through Weighted Fractional Derivatives

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ricardo Almeida
{"title":"Optimizing Variational Problems through Weighted Fractional Derivatives","authors":"Ricardo Almeida","doi":"10.3390/fractalfract8050272","DOIUrl":null,"url":null,"abstract":"In this article, we explore a variety of problems within the domain of calculus of variations, specifically in the context of fractional calculus. The fractional derivative we consider incorporates the notion of weighted fractional derivatives along with derivatives with respect to another function. Besides the fractional operators, the Lagrange function depends on extremal points. We examine the fundamental problem, providing the fractional Euler–Lagrange equation and the associated transversality conditions. Both the isoperimetric and Herglotz problems are also explored. Finally, we conclude with an analysis of the variational problem, incorporating fractional derivatives of any positive real order.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050272","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we explore a variety of problems within the domain of calculus of variations, specifically in the context of fractional calculus. The fractional derivative we consider incorporates the notion of weighted fractional derivatives along with derivatives with respect to another function. Besides the fractional operators, the Lagrange function depends on extremal points. We examine the fundamental problem, providing the fractional Euler–Lagrange equation and the associated transversality conditions. Both the isoperimetric and Herglotz problems are also explored. Finally, we conclude with an analysis of the variational problem, incorporating fractional derivatives of any positive real order.
通过加权分式导数优化变量问题
在本文中,我们将探讨变分微积分领域内的各种问题,特别是在分数微积分的背景下。我们所考虑的分数导数包含了加权分数导数的概念以及相对于另一个函数的导数。除了分数算子,拉格朗日函数还取决于极值点。我们研究了基本问题,提供了分数欧拉-拉格朗日方程和相关的横向条件。我们还探讨了等周问题和赫格洛茨问题。最后,我们对变分问题进行了分析,其中包含任意正实阶的分数导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信