{"title":"DeepGCN based on variable multi-graph and multimodal data for ASD diagnosis","authors":"Shuaiqi Liu, Siqi Wang, Chaolei Sun, Bing Li, Shuihua Wang, Fei Li","doi":"10.1049/cit2.12340","DOIUrl":null,"url":null,"abstract":"<p>Diagnosing individuals with autism spectrum disorder (ASD) accurately faces great challenges in clinical practice, primarily due to the data's high heterogeneity and limited sample size. To tackle this issue, the authors constructed a deep graph convolutional network (GCN) based on variable multi-graph and multimodal data (VMM-DGCN) for ASD diagnosis. Firstly, the functional connectivity matrix was constructed to extract primary features. Then, the authors constructed a variable multi-graph construction strategy to capture the multi-scale feature representations of each subject by utilising convolutional filters with varying kernel sizes. Furthermore, the authors brought the non-imaging information into the feature representation at each scale and constructed multiple population graphs based on multimodal data by fully considering the correlation between subjects. After extracting the deeper features of population graphs using the deep GCN(DeepGCN), the authors fused the node features of multiple subgraphs to perform node classification tasks for typical control and ASD patients. The proposed algorithm was evaluated on the Autism Brain Imaging Data Exchange I (ABIDE I) dataset, achieving an accuracy of 91.62% and an area under the curve value of 95.74%. These results demonstrated its outstanding performance compared to other ASD diagnostic algorithms.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 4","pages":"879-893"},"PeriodicalIF":8.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12340","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12340","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Diagnosing individuals with autism spectrum disorder (ASD) accurately faces great challenges in clinical practice, primarily due to the data's high heterogeneity and limited sample size. To tackle this issue, the authors constructed a deep graph convolutional network (GCN) based on variable multi-graph and multimodal data (VMM-DGCN) for ASD diagnosis. Firstly, the functional connectivity matrix was constructed to extract primary features. Then, the authors constructed a variable multi-graph construction strategy to capture the multi-scale feature representations of each subject by utilising convolutional filters with varying kernel sizes. Furthermore, the authors brought the non-imaging information into the feature representation at each scale and constructed multiple population graphs based on multimodal data by fully considering the correlation between subjects. After extracting the deeper features of population graphs using the deep GCN(DeepGCN), the authors fused the node features of multiple subgraphs to perform node classification tasks for typical control and ASD patients. The proposed algorithm was evaluated on the Autism Brain Imaging Data Exchange I (ABIDE I) dataset, achieving an accuracy of 91.62% and an area under the curve value of 95.74%. These results demonstrated its outstanding performance compared to other ASD diagnostic algorithms.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.