Volatility Analysis of Financial Time Series Using the Multifractal Conditional Diffusion Entropy Method

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Mariani, William Kubin, Peter K. Asante, Osei K. Tweneboah
{"title":"Volatility Analysis of Financial Time Series Using the Multifractal Conditional Diffusion Entropy Method","authors":"M. Mariani, William Kubin, Peter K. Asante, Osei K. Tweneboah","doi":"10.3390/fractalfract8050274","DOIUrl":null,"url":null,"abstract":"In this article, we introduce the multifractal conditional diffusion entropy method for analyzing the volatility of financial time series. This method utilizes a q-order diffusion entropy based on a q-weighted time lag scale. The technique of conditional diffusion entropy proves valuable for examining bull and bear behaviors in stock markets across various time scales. Empirical findings from analyzing the Dow Jones Industrial Average (DJI) indicate that employing multi-time lag scales offers greater insight into the complex dynamics of highly fluctuating time series, often characterized by multifractal behavior. A smaller time scale like t=2 to t=256 coincides more with the state of the DJI index than larger time scales like t=256 to t=1024. We observe extreme fluctuations in the conditional diffusion entropy for DJI for a short time lag, while smoother or averaged fluctuations occur over larger time lags.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050274","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce the multifractal conditional diffusion entropy method for analyzing the volatility of financial time series. This method utilizes a q-order diffusion entropy based on a q-weighted time lag scale. The technique of conditional diffusion entropy proves valuable for examining bull and bear behaviors in stock markets across various time scales. Empirical findings from analyzing the Dow Jones Industrial Average (DJI) indicate that employing multi-time lag scales offers greater insight into the complex dynamics of highly fluctuating time series, often characterized by multifractal behavior. A smaller time scale like t=2 to t=256 coincides more with the state of the DJI index than larger time scales like t=256 to t=1024. We observe extreme fluctuations in the conditional diffusion entropy for DJI for a short time lag, while smoother or averaged fluctuations occur over larger time lags.
利用多分形条件扩散熵法分析金融时间序列的波动性
本文介绍了用于分析金融时间序列波动性的多分形条件扩散熵方法。该方法利用基于 q 加权时滞标度的 q 阶扩散熵。事实证明,条件扩散熵技术对于研究股票市场在不同时间尺度上的牛市和熊市行为非常有价值。分析道琼斯工业平均指数(DJI)的经验结果表明,采用多时间滞后标度可以更深入地了解高度波动的时间序列的复杂动态,这些时间序列通常具有多分形行为的特征。与 t=256 到 t=1024 等较大的时间尺度相比,t=2 到 t=256 等较小的时间尺度与道琼斯工业平均指数的状态更为吻合。我们观察到,在较短的时间滞后期,道琼斯工业平均指数的条件扩散熵波动剧烈,而在较大的时间滞后期,波动则较为平滑或平均。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信