M. Mariani, William Kubin, Peter K. Asante, Osei K. Tweneboah
{"title":"Volatility Analysis of Financial Time Series Using the Multifractal Conditional Diffusion Entropy Method","authors":"M. Mariani, William Kubin, Peter K. Asante, Osei K. Tweneboah","doi":"10.3390/fractalfract8050274","DOIUrl":null,"url":null,"abstract":"In this article, we introduce the multifractal conditional diffusion entropy method for analyzing the volatility of financial time series. This method utilizes a q-order diffusion entropy based on a q-weighted time lag scale. The technique of conditional diffusion entropy proves valuable for examining bull and bear behaviors in stock markets across various time scales. Empirical findings from analyzing the Dow Jones Industrial Average (DJI) indicate that employing multi-time lag scales offers greater insight into the complex dynamics of highly fluctuating time series, often characterized by multifractal behavior. A smaller time scale like t=2 to t=256 coincides more with the state of the DJI index than larger time scales like t=256 to t=1024. We observe extreme fluctuations in the conditional diffusion entropy for DJI for a short time lag, while smoother or averaged fluctuations occur over larger time lags.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"91 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050274","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we introduce the multifractal conditional diffusion entropy method for analyzing the volatility of financial time series. This method utilizes a q-order diffusion entropy based on a q-weighted time lag scale. The technique of conditional diffusion entropy proves valuable for examining bull and bear behaviors in stock markets across various time scales. Empirical findings from analyzing the Dow Jones Industrial Average (DJI) indicate that employing multi-time lag scales offers greater insight into the complex dynamics of highly fluctuating time series, often characterized by multifractal behavior. A smaller time scale like t=2 to t=256 coincides more with the state of the DJI index than larger time scales like t=256 to t=1024. We observe extreme fluctuations in the conditional diffusion entropy for DJI for a short time lag, while smoother or averaged fluctuations occur over larger time lags.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico