Moon Sung Kang, Hee Jeong Jang, Jeong Min Kim, Hyo Jung Jo, Kyung Min Park, Young-Hwa Chung, Dong-Wook Han
{"title":"Evaluation of Anti-inflammatory Activity of Garlic Extracts in 3D Bioprinted Skin Equivalents","authors":"Moon Sung Kang, Hee Jeong Jang, Jeong Min Kim, Hyo Jung Jo, Kyung Min Park, Young-Hwa Chung, Dong-Wook Han","doi":"10.1002/anbr.202400007","DOIUrl":null,"url":null,"abstract":"<p>Ongoing obstacles in preclinical drug testing have raised significant concerns within the pharmaceutical industry. Recently, utilizing the potential of three-dimensional (3D) bioprinting offers a solution for creating tissue models for screening of the effectiveness and safety of new drugs. In this study, the anti-inflammatory potential of garlic extracts is assessed, specifically N-Benzyl-N-methyl-dodecan-1-amine (BMDA), using a 3D bioprinted artificial skin model. Comprehensive physicochemical characterization and immunocytochemical analysis demonstrate that the 3D bioprinted skin model exhibits structures and functions resembling human skin. BMDA treatment in a prepared skin model reveals its capacity to mitigate H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and trigger anti-inflammatory responses. Notably, BMDA reduces the expression of pro-inflammatory cytokines and chemokines by downregulating NF-<i>κ</i>B and mitogen-activated protein kinase inflammatory signaling pathways. In summary, our findings highlight the potential of an artificial skin model as a robust platform for the development of new drugs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ongoing obstacles in preclinical drug testing have raised significant concerns within the pharmaceutical industry. Recently, utilizing the potential of three-dimensional (3D) bioprinting offers a solution for creating tissue models for screening of the effectiveness and safety of new drugs. In this study, the anti-inflammatory potential of garlic extracts is assessed, specifically N-Benzyl-N-methyl-dodecan-1-amine (BMDA), using a 3D bioprinted artificial skin model. Comprehensive physicochemical characterization and immunocytochemical analysis demonstrate that the 3D bioprinted skin model exhibits structures and functions resembling human skin. BMDA treatment in a prepared skin model reveals its capacity to mitigate H2O2-induced oxidative stress and trigger anti-inflammatory responses. Notably, BMDA reduces the expression of pro-inflammatory cytokines and chemokines by downregulating NF-κB and mitogen-activated protein kinase inflammatory signaling pathways. In summary, our findings highlight the potential of an artificial skin model as a robust platform for the development of new drugs.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.