Stephanie K. Moore, Maggie Broadwater, Curtis Cha, Q. Dortch, Chris J. Harvey, Karma C. Norman, Justin Pearce, Carrie Pomeroy, J. Samhouri
{"title":"Exploring the human dimensions of harmful algal blooms through a well-being framework to increase resilience in a changing world","authors":"Stephanie K. Moore, Maggie Broadwater, Curtis Cha, Q. Dortch, Chris J. Harvey, Karma C. Norman, Justin Pearce, Carrie Pomeroy, J. Samhouri","doi":"10.1371/journal.pclm.0000411","DOIUrl":null,"url":null,"abstract":"Climate change is expected to alter harmful algal bloom (HAB) dynamics in marine and freshwater systems around the world, with some regions already experiencing significant increases in HAB events. There has been considerable investment of effort to identify, characterize, track, and predict the direction and magnitude of HAB response to climate variability and change. In comparison, far less effort has been devoted to understanding how human communities respond to HABs in a changing world. Harmful algal blooms alter social-ecological interactions and can have negative consequences for human well-being. This is especially true for fishing communities because their resource-based economies operate at the interface of the natural environment and society. Identifying the components of human well-being that are most affected by HABs can advance ecosystem assessment and inform choices about climate-ready management strategies in and across complex systems. This study uses a framework for considering human well-being in management contexts to explore the effects of HABs of Pseudo-nitzschia spp. on US West Coast fishing communities. We find that HABs, and the management strategies to address them, affect almost every domain of human well-being; however, less than half of these effects meet the criteria to be considered by federal disaster response and recovery programs that provide relief to impacted communities. Moreover, much of the data used to measure the effects of HABs that are eligible for consideration by these programs are not consistently collected, which could lead to inequitable access to disaster relief. Our analysis provides a starting point for communities to develop a suite of high-quality indicators of human well-being to evaluate HAB impacts, assess the effectiveness of management actions and the equity of management outcomes, and track adaptation to system dynamics and external pressures.","PeriodicalId":510827,"journal":{"name":"PLOS Climate","volume":"60 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pclm.0000411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is expected to alter harmful algal bloom (HAB) dynamics in marine and freshwater systems around the world, with some regions already experiencing significant increases in HAB events. There has been considerable investment of effort to identify, characterize, track, and predict the direction and magnitude of HAB response to climate variability and change. In comparison, far less effort has been devoted to understanding how human communities respond to HABs in a changing world. Harmful algal blooms alter social-ecological interactions and can have negative consequences for human well-being. This is especially true for fishing communities because their resource-based economies operate at the interface of the natural environment and society. Identifying the components of human well-being that are most affected by HABs can advance ecosystem assessment and inform choices about climate-ready management strategies in and across complex systems. This study uses a framework for considering human well-being in management contexts to explore the effects of HABs of Pseudo-nitzschia spp. on US West Coast fishing communities. We find that HABs, and the management strategies to address them, affect almost every domain of human well-being; however, less than half of these effects meet the criteria to be considered by federal disaster response and recovery programs that provide relief to impacted communities. Moreover, much of the data used to measure the effects of HABs that are eligible for consideration by these programs are not consistently collected, which could lead to inequitable access to disaster relief. Our analysis provides a starting point for communities to develop a suite of high-quality indicators of human well-being to evaluate HAB impacts, assess the effectiveness of management actions and the equity of management outcomes, and track adaptation to system dynamics and external pressures.