Construction of an Internal Charge Field: CoS1.097/Ni3S2 Heterojunction Promotes Efficient Urea Oxidation Reaction

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mingxuan Du, Yujin Ji, Youyong Li, Shengzhong (Frank) Liu, Junqing Yan
{"title":"Construction of an Internal Charge Field: CoS1.097/Ni3S2 Heterojunction Promotes Efficient Urea Oxidation Reaction","authors":"Mingxuan Du,&nbsp;Yujin Ji,&nbsp;Youyong Li,&nbsp;Shengzhong (Frank) Liu,&nbsp;Junqing Yan","doi":"10.1002/adfm.202402776","DOIUrl":null,"url":null,"abstract":"<p>Urea oxidation reaction (UOR) features a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, facilitating the hydrogen evolution reaction (HER) at the cathode. The distribution of charge plays a pivotal role in promoting the adsorption and cleavage of chemical groups in urea molecules, which can be modulated by introducing a heterostructure. Herein, a CoS<sub>1.097</sub>/Ni<sub>3</sub>S<sub>2</sub> heterojunction grown on nickel foam is designed, serving simultaneously for UOR and HER. Based on density functional theory (DFT) calculations, the spontaneous charge transfer at the CoS<sub>1.097</sub>/Ni<sub>3</sub>S<sub>2</sub> heterointerface induces the formation of localized electrophilic/nucleophilic regions, intelligently adsorbing electron-donating/electron-withdrawing groups in urea molecules, activating chemical bonds, thereby triggering urea decomposition. CoS<sub>1.097</sub>/Ni<sub>3</sub>S<sub>2</sub> exhibits excellent catalytic activity for urea, requiring only a potential of 1.22 V (with an overpotential of 0.85 V) to achieve a current density of 100 mA cm<sup>−2</sup> in UOR, and potentials of 1.27 and 1.57 V to reach current densities of 10 and 100 mA cm<sup>−2</sup>, respectively, in a UOR//HER electrolysis cell, maintaining good stability at high current density for 60 h. Tests in real urine have demonstrated performance similar to that in urea electrolyte. This work represents nearly the best catalytic performance of transition metal-based materials in UOR applications, promising for both efficient hydrogen production and urea decomposition.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 38","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202402776","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Urea oxidation reaction (UOR) features a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, facilitating the hydrogen evolution reaction (HER) at the cathode. The distribution of charge plays a pivotal role in promoting the adsorption and cleavage of chemical groups in urea molecules, which can be modulated by introducing a heterostructure. Herein, a CoS1.097/Ni3S2 heterojunction grown on nickel foam is designed, serving simultaneously for UOR and HER. Based on density functional theory (DFT) calculations, the spontaneous charge transfer at the CoS1.097/Ni3S2 heterointerface induces the formation of localized electrophilic/nucleophilic regions, intelligently adsorbing electron-donating/electron-withdrawing groups in urea molecules, activating chemical bonds, thereby triggering urea decomposition. CoS1.097/Ni3S2 exhibits excellent catalytic activity for urea, requiring only a potential of 1.22 V (with an overpotential of 0.85 V) to achieve a current density of 100 mA cm−2 in UOR, and potentials of 1.27 and 1.57 V to reach current densities of 10 and 100 mA cm−2, respectively, in a UOR//HER electrolysis cell, maintaining good stability at high current density for 60 h. Tests in real urine have demonstrated performance similar to that in urea electrolyte. This work represents nearly the best catalytic performance of transition metal-based materials in UOR applications, promising for both efficient hydrogen production and urea decomposition.

Abstract Image

构建内部电荷场:CoS1.097/Ni3S2 异质结促进高效尿素氧化反应
与电解过程中的氧进化反应(OER)相比,尿素氧化反应(UOR)具有较低的过电位,从而促进了阴极的氢进化反应(HER)。电荷的分布在促进尿素分子中化学基团的吸附和裂解方面起着关键作用,这可以通过引入异质结构来调节。本文设计了一种生长在泡沫镍上的 CoS1.097/Ni3S2 异质结,可同时用于 UOR 和 HER。根据密度泛函理论(DFT)计算,CoS1.097/Ni3S2 异质结表面的自发电荷转移诱导形成局部亲电/亲核区域,智能地吸附尿素分子中的电子捐献/电子撤回基团,激活化学键,从而引发尿素分解。CoS1.097/Ni3S2 对尿素具有极佳的催化活性,在尿素电解液中只需要 1.22 V 的电位(过电位为 0.85 V)就能达到 100 mA cm-2 的电流密度,而在尿素电解液//热电解质电解池中分别需要 1.27 V 和 1.57 V 的电位就能达到 10 mA cm-2 和 100 mA cm-2 的电流密度,并在高电流密度下保持 60 小时的良好稳定性。这项工作几乎代表了过渡金属基材料在 UOR 应用中的最佳催化性能,有望实现高效制氢和尿素分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信