Coupled Mode Design of Low-Loss Electromechanical Phase Shifters

Micro Pub Date : 2024-05-06 DOI:10.3390/micro4020021
Nathnael S. Abebe, Sunil Pai, Rebecca L. Hwang, P. Broaddus, Yu Miao, Olav Solgaard
{"title":"Coupled Mode Design of Low-Loss Electromechanical Phase Shifters","authors":"Nathnael S. Abebe, Sunil Pai, Rebecca L. Hwang, P. Broaddus, Yu Miao, Olav Solgaard","doi":"10.3390/micro4020021","DOIUrl":null,"url":null,"abstract":"Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, the phase-dependent loss, to the geometry of the MEMS phase shifters. The analytical model explains the loss mechanisms of MEMS phase shifters and enables simple optimization procedures. Based on that insight, we propose phase shifter geometries that minimize coupling power out of the waveguide. Minimization of the loss is based on mode orthogonality of a waveguide and phase shifter modes. We numerically model such geometries for a silicon nitride MEMS phase shifter over a silicon nitride waveguide, predicting less than −1.08 dB loss over a 2π range and −0.026 dB loss when optimized for a π range. We demonstrate this design framework with a custom silicon nitride process and achieve −0.48 dB insertion loss and less than 0.05 dB transmission variation over a π phase shift. Our work demonstrates the strength of the coupled mode approach for the design and optimization of MEMS phase shifters.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"346 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/micro4020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, the phase-dependent loss, to the geometry of the MEMS phase shifters. The analytical model explains the loss mechanisms of MEMS phase shifters and enables simple optimization procedures. Based on that insight, we propose phase shifter geometries that minimize coupling power out of the waveguide. Minimization of the loss is based on mode orthogonality of a waveguide and phase shifter modes. We numerically model such geometries for a silicon nitride MEMS phase shifter over a silicon nitride waveguide, predicting less than −1.08 dB loss over a 2π range and −0.026 dB loss when optimized for a π range. We demonstrate this design framework with a custom silicon nitride process and achieve −0.48 dB insertion loss and less than 0.05 dB transmission variation over a π phase shift. Our work demonstrates the strength of the coupled mode approach for the design and optimization of MEMS phase shifters.
低损耗机电移相器的耦合模式设计
微机电系统(MEMS)具有在硅光子学中提供低功耗移相的潜力,但设计低损耗器件的技术是采用该技术的必要条件。基于耦合模式理论 (CMT),我们推导出了与 MEMS 移相器几何形状相关的损耗分析表达式,特别是与相位相关的损耗。分析模型解释了 MEMS 移相器的损耗机制,并实现了简单的优化程序。在此基础上,我们提出了移相器的几何结构,使波导外的耦合功率最小。损耗最小化基于波导和移相器模式的正交性。我们对氮化硅波导上的氮化硅 MEMS 移相器的这种几何形状进行了数值建模,预测在 2π 范围内的损耗小于 -1.08 dB,在 π 范围内优化后的损耗为 -0.026 dB。我们利用定制氮化硅工艺演示了这一设计框架,并在 π 相移范围内实现了 -0.48 dB 的插入损耗和小于 0.05 dB 的传输变化。我们的工作证明了耦合模式方法在设计和优化 MEMS 移相器方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信