Thermohydraulic performance augmentation of triangular duct solar air heater using semi-conical vortex generators: Numerical and experimental study

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-05-06 DOI:10.1002/htj.23077
G. K. Pramod, N. Madhwesh, U. C. Arunachala, M. S. Manjunath
{"title":"Thermohydraulic performance augmentation of triangular duct solar air heater using semi-conical vortex generators: Numerical and experimental study","authors":"G. K. Pramod,&nbsp;N. Madhwesh,&nbsp;U. C. Arunachala,&nbsp;M. S. Manjunath","doi":"10.1002/htj.23077","DOIUrl":null,"url":null,"abstract":"<p>Thermohydraulic performance augmentation using turbulence promotors is a commonly adopted technique in solar air heater (SAH) applications. This article presents the thermohydraulic performance augmentation of triangular duct SAH using semi-conical vortex generators (SCVG) using computational fluid dynamics and experimental methodology for various flow Reynolds numbers ranging from 6000 to 21,000. An in-depth parametric analysis is undertaken to establish the influence of flow attack angle, relative longitudinal pitch, relative transverse pitch and cone diameter of SCVG on the thermohydraulic performance as indicated by the thermohydraulic performance parameter (THPP). The results reveal that the SCVG generates longitudinal vortices and introduces flow impingement zones which significantly affects the flow and heat transfer characteristics of air heaters. Correlations for Nusselt number and friction factor are established, which predicts the performance outcomes with an average error of 6.74% and 4.46%, respectively. The optimal THPP is determined to be 1.74 using artificial neural network model and Bonobo Optimization algorithm. The SCVG produces THPP values well above unity for the entire flow Reynolds number range of 6000–21,000.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 6","pages":"3021-3053"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/htj.23077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermohydraulic performance augmentation using turbulence promotors is a commonly adopted technique in solar air heater (SAH) applications. This article presents the thermohydraulic performance augmentation of triangular duct SAH using semi-conical vortex generators (SCVG) using computational fluid dynamics and experimental methodology for various flow Reynolds numbers ranging from 6000 to 21,000. An in-depth parametric analysis is undertaken to establish the influence of flow attack angle, relative longitudinal pitch, relative transverse pitch and cone diameter of SCVG on the thermohydraulic performance as indicated by the thermohydraulic performance parameter (THPP). The results reveal that the SCVG generates longitudinal vortices and introduces flow impingement zones which significantly affects the flow and heat transfer characteristics of air heaters. Correlations for Nusselt number and friction factor are established, which predicts the performance outcomes with an average error of 6.74% and 4.46%, respectively. The optimal THPP is determined to be 1.74 using artificial neural network model and Bonobo Optimization algorithm. The SCVG produces THPP values well above unity for the entire flow Reynolds number range of 6000–21,000.

Abstract Image

使用半锥形涡流发生器提高三角形管道太阳能空气加热器的热液压性能:数值和实验研究
在太阳能空气加热器(SAH)应用中,使用湍流促进剂提高热液压性能是一项普遍采用的技术。本文介绍了使用半锥形涡流发生器(SCVG)的三角风道太阳能空气加热器的热液压性能增强技术,该技术采用了计算流体动力学和实验方法,适用于从 6000 到 21000 的各种流体雷诺数。通过深入的参数分析,确定了半锥形涡流发生器的流攻角、相对纵向间距、相对横向间距和锥体直径对热液压性能的影响,热液压性能参数(THPP)显示了这些因素对热液压性能的影响。研究结果表明,SCVG 会产生纵向涡流并引入流动撞击区,从而严重影响空气加热器的流动和传热特性。建立了努塞尔特数和摩擦因数的相关性,可预测性能结果,平均误差分别为 6.74% 和 4.46%。利用人工神经网络模型和 Bonobo 优化算法,确定最佳 THPP 为 1.74。在 6000-21000 雷诺数的整个流动范围内,SCVG 产生的 THPP 值均远高于统一值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信