Toward Collaborative Multitarget Search and Navigation with Attention-Enhanced Local Observation

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jiaping Xiao, Phumrapee Pisutsin, Mir Feroskhan
{"title":"Toward Collaborative Multitarget Search and Navigation with Attention-Enhanced Local Observation","authors":"Jiaping Xiao,&nbsp;Phumrapee Pisutsin,&nbsp;Mir Feroskhan","doi":"10.1002/aisy.202300761","DOIUrl":null,"url":null,"abstract":"<p>Collaborative multitarget search and navigation (CMTSN) is highly demanded in complex missions such as rescue and warehouse management. Traditional centralized and decentralized approaches fall short in terms of scalability and adaptability to real-world complexities such as unknown targets and large-scale missions. This article addresses this challenging CMTSN problem in three-dimensional spaces, specifically for agents with local visual observation operating in obstacle-rich environments. To overcome these challenges, this work presents the POsthumous Mix-credit assignment with Attention (POMA) framework. POMA integrates adaptive curriculum learning and mixed individual-group credit assignments to efficiently balance individual and group contributions in a sparse reward environment. It also leverages an attention mechanism to manage variable local observations, enhancing the framework's scalability. Extensive simulations demonstrate that POMA outperforms a variety of baseline methods. Furthermore, the trained model is deployed over a physical visual drone swarm, demonstrating the effectiveness and generalization of our approach in real-world autonomous flight.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300761","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative multitarget search and navigation (CMTSN) is highly demanded in complex missions such as rescue and warehouse management. Traditional centralized and decentralized approaches fall short in terms of scalability and adaptability to real-world complexities such as unknown targets and large-scale missions. This article addresses this challenging CMTSN problem in three-dimensional spaces, specifically for agents with local visual observation operating in obstacle-rich environments. To overcome these challenges, this work presents the POsthumous Mix-credit assignment with Attention (POMA) framework. POMA integrates adaptive curriculum learning and mixed individual-group credit assignments to efficiently balance individual and group contributions in a sparse reward environment. It also leverages an attention mechanism to manage variable local observations, enhancing the framework's scalability. Extensive simulations demonstrate that POMA outperforms a variety of baseline methods. Furthermore, the trained model is deployed over a physical visual drone swarm, demonstrating the effectiveness and generalization of our approach in real-world autonomous flight.

Abstract Image

利用注意力增强型局部观察实现多目标协同搜索和导航
在救援和仓库管理等复杂任务中,对协作式多目标搜索和导航(CMTSN)的需求很高。传统的集中式和分散式方法在可扩展性和适应现实世界的复杂性(如未知目标和大规模任务)方面存在不足。本文探讨了三维空间中这一具有挑战性的 CMTSN 问题,特别是在障碍物丰富的环境中具有本地视觉观测能力的代理。为了克服这些挑战,本研究提出了 "注意力混合学分分配"(POMA)框架。POMA 整合了自适应课程学习和个人-小组混合学分分配,以便在奖励稀少的环境中有效平衡个人和小组的贡献。它还利用注意力机制来管理可变的局部观察,从而增强了框架的可扩展性。大量的仿真证明,POMA 优于各种基准方法。此外,经过训练的模型被部署在一个物理可视无人机群上,证明了我们的方法在现实世界自主飞行中的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信