Yuhang Yao, Jiaxin Yuan, Tao Chen, Chen Zhang, Hui Yang
{"title":"Adaptive Neural Control for a Class of Random Fractional-Order Multi-Agent Systems with Markov Jump Parameters and Full State Constraints","authors":"Yuhang Yao, Jiaxin Yuan, Tao Chen, Chen Zhang, Hui Yang","doi":"10.3390/fractalfract8050278","DOIUrl":null,"url":null,"abstract":"Based on an adaptive neural control scheme, this paper investigates the consensus problem of random Markov jump multi-agent systems with full state constraints. Each agent is described by the fractional-order random nonlinear uncertain system driven by random differential equations, where the random noise is the second-order stationary stochastic process. First, in order to deal with the unknown functions with Markov jump parameters, a radial basis function neural network (RBFNN) structure is introduced to achieve approximation. Second, for the purpose of keeping the agents’ states from violating the constraint boundary, the tan-type barrier Lyapunov function is employed. By using the stochastic stability theory and adopting the backstepping technique, a novel adaptive neural control design method is presented. Furthermore, to cope with the differential explosion problem in the design course, the extended state observer (ESO) is developed instead of neural network (NN) approximation or command filtering techniques. Finally, the exponentially noise-to-state stability in the mean square is analyzed rigorously by the Lyapunov method, which guarantees the consensus of the considered multi-agent systems and all the agents’ outputs are bounded in probability. Two simulation examples are provided to verify the effectiveness of the suggested control strategy.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050278","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Based on an adaptive neural control scheme, this paper investigates the consensus problem of random Markov jump multi-agent systems with full state constraints. Each agent is described by the fractional-order random nonlinear uncertain system driven by random differential equations, where the random noise is the second-order stationary stochastic process. First, in order to deal with the unknown functions with Markov jump parameters, a radial basis function neural network (RBFNN) structure is introduced to achieve approximation. Second, for the purpose of keeping the agents’ states from violating the constraint boundary, the tan-type barrier Lyapunov function is employed. By using the stochastic stability theory and adopting the backstepping technique, a novel adaptive neural control design method is presented. Furthermore, to cope with the differential explosion problem in the design course, the extended state observer (ESO) is developed instead of neural network (NN) approximation or command filtering techniques. Finally, the exponentially noise-to-state stability in the mean square is analyzed rigorously by the Lyapunov method, which guarantees the consensus of the considered multi-agent systems and all the agents’ outputs are bounded in probability. Two simulation examples are provided to verify the effectiveness of the suggested control strategy.