Fluorescent Molecular Rotors Quantify an Adjuvant-Induced Softening of Plant Wax

Petr S. Sherin*, Markus Rueckel* and Marina K. Kuimova*, 
{"title":"Fluorescent Molecular Rotors Quantify an Adjuvant-Induced Softening of Plant Wax","authors":"Petr S. Sherin*,&nbsp;Markus Rueckel* and Marina K. Kuimova*,&nbsp;","doi":"10.1021/cbmi.4c00005","DOIUrl":null,"url":null,"abstract":"<p >Epicuticular wax is the outmost layer of plant leaves that protects them from desiccation and penetration of harmful reagents. There is an intense industrial effort in the development of softening agents, adjuvants, that can adjust the permeability of the wax toward pesticides and, thus, play an important role in sustainable agriculture. However, mechanistic understanding of the structure and dynamic properties within the plant wax, particularly upon the application of adjuvants, is currently lacking. In this work, we demonstrate that fluorescence lifetime imaging microscopy (FLIM) combined with molecular rotors, fluorescent probes sensitive to viscosity, can directly probe the microviscosity of amorphous and crystalline phases of model plant wax layers. Moreover, this approach is able to quantify the changes in viscosity in both phases upon the addition of water and adjuvant solutions on top of the wax. We show that water permeation mostly perturbs the crystalline phase of the wax, while our chosen adjuvant, Plurafac LF431, mainly softens the amorphous phase of the wax. Our technique provides a facile and quantitative way to monitor dynamic properties within plant waxes with diffraction-limited resolution and reveals the effect of organic substances on wax structure and rigidity, crucial for designing next-generation agents to improve agricultural efficiency.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epicuticular wax is the outmost layer of plant leaves that protects them from desiccation and penetration of harmful reagents. There is an intense industrial effort in the development of softening agents, adjuvants, that can adjust the permeability of the wax toward pesticides and, thus, play an important role in sustainable agriculture. However, mechanistic understanding of the structure and dynamic properties within the plant wax, particularly upon the application of adjuvants, is currently lacking. In this work, we demonstrate that fluorescence lifetime imaging microscopy (FLIM) combined with molecular rotors, fluorescent probes sensitive to viscosity, can directly probe the microviscosity of amorphous and crystalline phases of model plant wax layers. Moreover, this approach is able to quantify the changes in viscosity in both phases upon the addition of water and adjuvant solutions on top of the wax. We show that water permeation mostly perturbs the crystalline phase of the wax, while our chosen adjuvant, Plurafac LF431, mainly softens the amorphous phase of the wax. Our technique provides a facile and quantitative way to monitor dynamic properties within plant waxes with diffraction-limited resolution and reveals the effect of organic substances on wax structure and rigidity, crucial for designing next-generation agents to improve agricultural efficiency.

Abstract Image

荧光分子旋转仪量化佐剂诱导的植物蜡软化现象
表皮蜡是植物叶片的最外层,可以保护叶片不被干燥和有害试剂渗透。目前,工业界正在大力开发软化剂、佐剂,以调节蜡对农药的渗透性,从而在可持续农业中发挥重要作用。然而,目前还缺乏对植物蜡质内部结构和动态特性的机理了解,尤其是在使用佐剂后。在这项工作中,我们证明了荧光寿命成像显微镜(FLIM)与分子转子(对粘度敏感的荧光探针)相结合,可以直接探测模型植物蜡层无定形和结晶相的微粘度。此外,这种方法还能量化蜡层上添加水和佐剂溶液时两相粘度的变化。我们的研究表明,水的渗透主要扰动蜡的结晶相,而我们选择的佐剂 Plurafac LF431 则主要软化蜡的无定形相。我们的技术提供了一种简便、定量的方法,以衍射极限分辨率监测植物蜡的动态特性,并揭示有机物质对蜡结构和硬度的影响,这对设计下一代药剂以提高农业效率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信