John Wilson, Blaise R. Kimmel, Karan Arora, Neil Chada, Vijaya Bharti, Alexander J Kwiatkowski, Jonah Finklestein, Ann Hanna, Emily Arner, Taylor L. Sheehy, L. Pastora, Jinming Yang, Hayden M Pagendarm, P. Stone, Brandie Taylor, Lauren Hubert, Kathern Gibson-Corley, Jody May, John McLean, Jeffrey Rathmell, Ann Richmond, Wendy Rathmell, Justin Balko, Barbara Fingleton, Ebony Hargrove-Wiley
{"title":"Programable Albumin-Hitchhiking Nanobodies Enhance the Delivery of STING Agonists to Potentiate Cancer Immunotherapy","authors":"John Wilson, Blaise R. Kimmel, Karan Arora, Neil Chada, Vijaya Bharti, Alexander J Kwiatkowski, Jonah Finklestein, Ann Hanna, Emily Arner, Taylor L. Sheehy, L. Pastora, Jinming Yang, Hayden M Pagendarm, P. Stone, Brandie Taylor, Lauren Hubert, Kathern Gibson-Corley, Jody May, John McLean, Jeffrey Rathmell, Ann Richmond, Wendy Rathmell, Justin Balko, Barbara Fingleton, Ebony Hargrove-Wiley","doi":"10.21203/rs.3.rs-3243545/v1","DOIUrl":null,"url":null,"abstract":"Abstract Stimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for in situ hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models. We also demonstrated the programmability of the platform through the recombinant integration of a second nanobody domain that targeted programmed cell death ligand-1 (PD-L1), which further increased cargo delivery to tumor sites while also blocking immunosuppressive PD-1/PD-L1 interactions. This bivalent nanobody carrier for covalently conjugated STING agonists stimulated robust antigen-specific T cell responses and long-lasting immunological memory, conferred enhanced therapeutic efficacy, and was effective as a neoadjuvant treatment for improving responses to adoptive T cell transfer therapy. Albumin-hitchhiking nanobodies thus offer an enabling, multimodal, and programmable platform for systemic delivery of STING agonists with potential to augment responses to multiple immunotherapeutic modalities.","PeriodicalId":21039,"journal":{"name":"Research Square","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-3243545/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Stimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for in situ hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models. We also demonstrated the programmability of the platform through the recombinant integration of a second nanobody domain that targeted programmed cell death ligand-1 (PD-L1), which further increased cargo delivery to tumor sites while also blocking immunosuppressive PD-1/PD-L1 interactions. This bivalent nanobody carrier for covalently conjugated STING agonists stimulated robust antigen-specific T cell responses and long-lasting immunological memory, conferred enhanced therapeutic efficacy, and was effective as a neoadjuvant treatment for improving responses to adoptive T cell transfer therapy. Albumin-hitchhiking nanobodies thus offer an enabling, multimodal, and programmable platform for systemic delivery of STING agonists with potential to augment responses to multiple immunotherapeutic modalities.