{"title":"Experimental approach for characterizing the nonlinear, time and temperature‐dependent constitutive response of open‐cell polyurethane foams","authors":"J. Tao, Xiangyu Sun, Christian Franck","doi":"10.1111/str.12478","DOIUrl":null,"url":null,"abstract":"Elastomeric foams are composite materials comprising of a polymeric elastomer and interconnected gas‐filled pores, endowing them with exceptional compliance and the ability to undergo large, reversible deformations along with substantial volume change. These foams find extensive utility in contexts demanding compliance and compressibility, such as impact protection and cushioning, spanning a diverse range of applications. Changing temperature can dramatically alter foam stiffness, strength and deformation characteristics specifically around the material's glassy‐rubbery transition temperature (). With the aim of informing new constitutive model developments for elastomeric foams, we conducted a comprehensive series of large deformation, homogeneous compression and tension tests across strain rates from 10−2 s−1 to 100 s−1 and ambient temperatures ranging from −10°C to 50°C covering an even range around the material's of 20°C. To achieve precise control of ambient temperatures during mechanical testing, we constructed a custom‐designed environmental chamber for controlling the ambient temperature from −10°C to 50°C with a variation of less than 1°C. The obtained digital image correlation based stress‐strain data shows significant tension‐compression asymmetry as well as significant dependence on strain rate and ambient temperature, especially above and below the glass transition temperature. We provide full access to these data sets for the future development of rate‐ and temperature‐dependent constitutive models.","PeriodicalId":51176,"journal":{"name":"Strain","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12478","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Elastomeric foams are composite materials comprising of a polymeric elastomer and interconnected gas‐filled pores, endowing them with exceptional compliance and the ability to undergo large, reversible deformations along with substantial volume change. These foams find extensive utility in contexts demanding compliance and compressibility, such as impact protection and cushioning, spanning a diverse range of applications. Changing temperature can dramatically alter foam stiffness, strength and deformation characteristics specifically around the material's glassy‐rubbery transition temperature (). With the aim of informing new constitutive model developments for elastomeric foams, we conducted a comprehensive series of large deformation, homogeneous compression and tension tests across strain rates from 10−2 s−1 to 100 s−1 and ambient temperatures ranging from −10°C to 50°C covering an even range around the material's of 20°C. To achieve precise control of ambient temperatures during mechanical testing, we constructed a custom‐designed environmental chamber for controlling the ambient temperature from −10°C to 50°C with a variation of less than 1°C. The obtained digital image correlation based stress‐strain data shows significant tension‐compression asymmetry as well as significant dependence on strain rate and ambient temperature, especially above and below the glass transition temperature. We provide full access to these data sets for the future development of rate‐ and temperature‐dependent constitutive models.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.