{"title":"Acoustic logging array signal denoising using U-net and a case study in TangGu oil field","authors":"Xin Fu, Yang Gou, Fuqiang Wei","doi":"10.1093/jge/gxae051","DOIUrl":null,"url":null,"abstract":"\n This study developed a noise-reduction method for acoustic logging array signals using a deep neural network algorithm in the time-frequency domain. Initially, we derived analytical solutions for the received waveforms when the acoustic logging tool was positioned either at the centre or eccentrically within the borehole. To simulate the received waveforms across various formations, we developed a real-axis integration algorithm. Subsequently, we devised a noise-reduction algorithm workflow based on a convolutional neural network (CNN) and configured the structure and parameters of the U-net using TensorFlow. To address the scarcity of open datasets, we established both signal and noise datasets. The signal dataset was generated using theoretical simulation encompassing various model parameters, while the noise dataset was collected during tool testing and downhole operations. The trained model demonstrated substantial noise-reduction capabilities during validation. To validate the effectiveness of the algorithm, we applied noise reduction to actual data collected during downhole operations in the TangGu oilfield, yielding impressive results across different types of noisy data. Therefore, the U-net-based time-domain noise-reduction algorithm proposed in this paper holds the potential to significantly improve the quality of acoustic logging array signals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 5","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae051","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study developed a noise-reduction method for acoustic logging array signals using a deep neural network algorithm in the time-frequency domain. Initially, we derived analytical solutions for the received waveforms when the acoustic logging tool was positioned either at the centre or eccentrically within the borehole. To simulate the received waveforms across various formations, we developed a real-axis integration algorithm. Subsequently, we devised a noise-reduction algorithm workflow based on a convolutional neural network (CNN) and configured the structure and parameters of the U-net using TensorFlow. To address the scarcity of open datasets, we established both signal and noise datasets. The signal dataset was generated using theoretical simulation encompassing various model parameters, while the noise dataset was collected during tool testing and downhole operations. The trained model demonstrated substantial noise-reduction capabilities during validation. To validate the effectiveness of the algorithm, we applied noise reduction to actual data collected during downhole operations in the TangGu oilfield, yielding impressive results across different types of noisy data. Therefore, the U-net-based time-domain noise-reduction algorithm proposed in this paper holds the potential to significantly improve the quality of acoustic logging array signals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.