Naoko Ashikawa, R. Lunsford, Federico Nespoli, E. Gilson, S. Kado, Jiansheng Hu, Yaowei Yu
{"title":"Coated boron layers by boronization and a real-time boron coating using impurity powder dropper in LHD","authors":"Naoko Ashikawa, R. Lunsford, Federico Nespoli, E. Gilson, S. Kado, Jiansheng Hu, Yaowei Yu","doi":"10.1088/2058-6272/ad495f","DOIUrl":null,"url":null,"abstract":"\n In Large Helical Device (LHD), diborane (B2H6) is used as a standard boron source for boronization, which is assisted by helium glow discharges. In 2019, a new Impurity Powder Dropper (IPD) system has been installed and is under evaluation as a real-time wall conditioning technique. In LHD), which is a large size heliotron device, an additional helium (He) glow discharge cleaning (GDC) after boronization has been operated for a reduction of hydrogen recycling from coated boron layers, and this operational time of 3 h was determined by spectroscopic data during glow discharges. A flat hydrogen profile is obtained on the top surface of coated boron on the specimen exposed to boronization, the result suggests a reduction of hydrogen at the top surface by He-GDC. Trapped oxygen in coated boron was obtained by boronization, and the coated boron, which has boron-oxide, on the first wall by B-IPD was also shown. Considering the difference in coating areas between B2H6 boronization and B-IPD operation, it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning.","PeriodicalId":506986,"journal":{"name":"Plasma Science and Technology","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad495f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In Large Helical Device (LHD), diborane (B2H6) is used as a standard boron source for boronization, which is assisted by helium glow discharges. In 2019, a new Impurity Powder Dropper (IPD) system has been installed and is under evaluation as a real-time wall conditioning technique. In LHD), which is a large size heliotron device, an additional helium (He) glow discharge cleaning (GDC) after boronization has been operated for a reduction of hydrogen recycling from coated boron layers, and this operational time of 3 h was determined by spectroscopic data during glow discharges. A flat hydrogen profile is obtained on the top surface of coated boron on the specimen exposed to boronization, the result suggests a reduction of hydrogen at the top surface by He-GDC. Trapped oxygen in coated boron was obtained by boronization, and the coated boron, which has boron-oxide, on the first wall by B-IPD was also shown. Considering the difference in coating areas between B2H6 boronization and B-IPD operation, it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning.