Exploring the physical characteristics and nonlinear wave dynamics of a (3+1)-dimensional integrable evolution system

Xiao Zhang, Raghda A. M. Attia, S. H. Alfalqi, J. F. Alzaidi, Mostafa M. A. Khater
{"title":"Exploring the physical characteristics and nonlinear wave dynamics of a (3+1)-dimensional integrable evolution system","authors":"Xiao Zhang, Raghda A. M. Attia, S. H. Alfalqi, J. F. Alzaidi, Mostafa M. A. Khater","doi":"10.1142/s0217984924503895","DOIUrl":null,"url":null,"abstract":"This study comprehensively explores the [Formula: see text]-dimensional Mikhailov–Novikov–Wang [Formula: see text] integrable equation, with the primary objective of elucidating its physical manifestations and establishing connections with analogous nonlinear evolution equations. The investigated model holds significant physical meaning across various disciplines within mathematical physics. Primarily, it serves as a fundamental model for understanding nonlinear wave propagation phenomena, offering insights into wave behaviors in complex media. Moreover, its relevance extends to nonlinear optics, where it governs the dynamics of optical pulses and solitons crucial for optical communication and signal processing technologies. Employing analytical methodologies, namely the unified [Formula: see text], Khater II ([Formula: see text]hat.II) method, and He’s variational iteration [Formula: see text] method, both numerical and analytical solutions are meticulously examined. Through this investigation, the intricate behaviors of the equation are systematically unveiled, shedding illuminating insights on various physical phenomena, notably including wave propagation in complex media and nonlinear optics. The outcomes not only underscore the efficacy of the analytical techniques deployed but also accentuate the equation’s pivotal role in modeling a broad spectrum of nonlinear wave dynamics. Consequently, this research significantly advances our comprehension of complex physical systems governed by nonlinear dynamics, thereby contributing notably to interdisciplinary pursuits in mathematical physics.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":" 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924503895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study comprehensively explores the [Formula: see text]-dimensional Mikhailov–Novikov–Wang [Formula: see text] integrable equation, with the primary objective of elucidating its physical manifestations and establishing connections with analogous nonlinear evolution equations. The investigated model holds significant physical meaning across various disciplines within mathematical physics. Primarily, it serves as a fundamental model for understanding nonlinear wave propagation phenomena, offering insights into wave behaviors in complex media. Moreover, its relevance extends to nonlinear optics, where it governs the dynamics of optical pulses and solitons crucial for optical communication and signal processing technologies. Employing analytical methodologies, namely the unified [Formula: see text], Khater II ([Formula: see text]hat.II) method, and He’s variational iteration [Formula: see text] method, both numerical and analytical solutions are meticulously examined. Through this investigation, the intricate behaviors of the equation are systematically unveiled, shedding illuminating insights on various physical phenomena, notably including wave propagation in complex media and nonlinear optics. The outcomes not only underscore the efficacy of the analytical techniques deployed but also accentuate the equation’s pivotal role in modeling a broad spectrum of nonlinear wave dynamics. Consequently, this research significantly advances our comprehension of complex physical systems governed by nonlinear dynamics, thereby contributing notably to interdisciplinary pursuits in mathematical physics.
探索 (3+1) 维可积分进化系统的物理特性和非线性波动力学
本研究全面探讨了[公式:见正文]维 Mikhailov-Novikov-Wang [公式:见正文]可积分方程,主要目的是阐明其物理表现形式,并建立与类似非线性演化方程的联系。所研究的模型在数学物理的各个学科中都具有重要的物理意义。首先,它是理解非线性波传播现象的基本模型,为复杂介质中的波行为提供了见解。此外,它的相关性还延伸到非线性光学领域,对光通信和信号处理技术至关重要的光脉冲和孤子的动力学起着支配作用。本研究采用分析方法,即统一[公式:见正文]、Khater II([公式:见正文]hat.II)方法和贺氏变分迭代[公式:见正文]方法,对数值解和分析解进行了细致的研究。通过这些研究,系统地揭示了方程的复杂行为,对各种物理现象,特别是复杂介质中的波传播和非线性光学,提出了富有启发性的见解。研究结果不仅强调了所采用的分析技术的有效性,而且突出了该方程在模拟各种非线性波动力学中的关键作用。因此,这项研究极大地推动了我们对受非线性动力学支配的复杂物理系统的理解,从而为数学物理学的跨学科研究做出了突出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信