Simultaneous determination of eight neonicotinoid insecticides and five metabolites in water samples by liquid chromatography‐tandem mass spectrometry unveils an overlooked risk
Yan Wu, Li Ma, Zengheng Xiong, Danyu Huang, Mingshan Zhang, Xinrui Yang, Long Cheng, Shuhai He, Huan Lin
{"title":"Simultaneous determination of eight neonicotinoid insecticides and five metabolites in water samples by liquid chromatography‐tandem mass spectrometry unveils an overlooked risk","authors":"Yan Wu, Li Ma, Zengheng Xiong, Danyu Huang, Mingshan Zhang, Xinrui Yang, Long Cheng, Shuhai He, Huan Lin","doi":"10.1002/sscp.202400009","DOIUrl":null,"url":null,"abstract":"Neonicotinoids (NEOs), highly selective toward insect nicotinic acetylcholine receptors, are extensively used due to their effectiveness against pests and relative non‐toxicity to vertebrates. However, their prolonged persistence in soil and water has led to frequent detection in food and environmental samples, posing significant environmental and health concerns. Recent research indicates these pesticides infiltrate aquatic ecosystems, threatening aquatic life and human health. Here, we improved the ultra‐performance liquid chromatography‐mass spectrometry method for detecting NEOs in water samples, increasing its sensitivity to fulfill forthcoming detection needs. This approach enables the simultaneous quantification of eight NEOs and five NEO metabolites in diverse water sources, including tap, surface, groundwater, sewage, and seawater. Our method achieves remarkably low detection limits for direct injection (0.78–1.7 ng/L) and solid‐phase extraction methods (0.13–0.25 ng/L). Critically, our findings reveal that boiling domestic drinking water doesn't degrade NEOs; instead, it increases their concentration due to water evaporation. A 6‐min boiling period can amplify pesticide concentration by 4–5 times, presenting a significant hazard in culinary practices of specific regions where prolonged cooking could lead to alarmingly high levels of these insecticides. This research underscores the importance of monitoring and mitigating NEO contamination in water sources to safeguard environmental and public health.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 19","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sscp.202400009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neonicotinoids (NEOs), highly selective toward insect nicotinic acetylcholine receptors, are extensively used due to their effectiveness against pests and relative non‐toxicity to vertebrates. However, their prolonged persistence in soil and water has led to frequent detection in food and environmental samples, posing significant environmental and health concerns. Recent research indicates these pesticides infiltrate aquatic ecosystems, threatening aquatic life and human health. Here, we improved the ultra‐performance liquid chromatography‐mass spectrometry method for detecting NEOs in water samples, increasing its sensitivity to fulfill forthcoming detection needs. This approach enables the simultaneous quantification of eight NEOs and five NEO metabolites in diverse water sources, including tap, surface, groundwater, sewage, and seawater. Our method achieves remarkably low detection limits for direct injection (0.78–1.7 ng/L) and solid‐phase extraction methods (0.13–0.25 ng/L). Critically, our findings reveal that boiling domestic drinking water doesn't degrade NEOs; instead, it increases their concentration due to water evaporation. A 6‐min boiling period can amplify pesticide concentration by 4–5 times, presenting a significant hazard in culinary practices of specific regions where prolonged cooking could lead to alarmingly high levels of these insecticides. This research underscores the importance of monitoring and mitigating NEO contamination in water sources to safeguard environmental and public health.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.