A Physics-based Model Assisted by Machine-Learning for Sodium-ion Batteries with both Liquid and Solid Electrolytes

H. Jagad, Jintao Fu, William R. Fullerton, Christopher Y. Li, E. Detsi, Yue Qi
{"title":"A Physics-based Model Assisted by Machine-Learning for Sodium-ion Batteries with both Liquid and Solid Electrolytes","authors":"H. Jagad, Jintao Fu, William R. Fullerton, Christopher Y. Li, E. Detsi, Yue Qi","doi":"10.1149/1945-7111/ad4a11","DOIUrl":null,"url":null,"abstract":"\n In the absence of experimental data of a fully developed hierarchical 3D sodium solid state batteries, we developed an improved continuum model by relying on Machine Learning-assisted parameter fitting to uncover the intrinsic material properties that can be transferred into different battery models. The electrochemical system simulated has sodium metal P2-type Na2/3[Ni1/3Fe1/12Mn7/12]O2 (NNFMO) as the cathode, paired with two types of electrolytes have been modeled viz, the organic liquid electrolyte and a solid polymer electrolyte. We implemented a 1D continuum model in COMSOL to suit both liquid and solid electrolytes, then used a Gaussian Process Regressor to fit and evaluate the electrochemical parameters in both battery systems. To enhance the generalizability of our model, the liquid cell and solid cell models share the same OCV input for the cathode materials. The resulting parameters are well aligned with their physical meaning and literature values. The continuum model is then used to understand the effect of increasing the thickness of the cathode and current density by analysing the cathode utilization, and the overpotentials arising from transport and charge transfer. This 1D model and the parameter set are ready to be used in a 3D battery architecture design.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad4a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the absence of experimental data of a fully developed hierarchical 3D sodium solid state batteries, we developed an improved continuum model by relying on Machine Learning-assisted parameter fitting to uncover the intrinsic material properties that can be transferred into different battery models. The electrochemical system simulated has sodium metal P2-type Na2/3[Ni1/3Fe1/12Mn7/12]O2 (NNFMO) as the cathode, paired with two types of electrolytes have been modeled viz, the organic liquid electrolyte and a solid polymer electrolyte. We implemented a 1D continuum model in COMSOL to suit both liquid and solid electrolytes, then used a Gaussian Process Regressor to fit and evaluate the electrochemical parameters in both battery systems. To enhance the generalizability of our model, the liquid cell and solid cell models share the same OCV input for the cathode materials. The resulting parameters are well aligned with their physical meaning and literature values. The continuum model is then used to understand the effect of increasing the thickness of the cathode and current density by analysing the cathode utilization, and the overpotentials arising from transport and charge transfer. This 1D model and the parameter set are ready to be used in a 3D battery architecture design.
机器学习辅助下的钠离子电池液态和固态电解质物理模型
在缺乏完全开发的分层三维钠固态电池实验数据的情况下,我们开发了一种改进的连续模型,依靠机器学习辅助参数拟合来揭示可转移到不同电池模型中的固有材料特性。模拟的电化学系统以金属钠 P2- 型 Na2/3[Ni1/3Fe1/12Mn7/12]O2(NNFMO)为阴极,并配以两种类型的电解质,即有机液体电解质和固体聚合物电解质。我们在 COMSOL 中建立了适合液态和固态电解质的一维连续模型,然后使用高斯过程回归器来拟合和评估这两种电池系统的电化学参数。为了增强模型的通用性,液态电池和固态电池模型共享相同的阴极材料 OCV 输入。由此得出的参数与其物理意义和文献值十分吻合。然后,通过分析阴极利用率以及传输和电荷转移产生的过电位,利用连续体模型了解增加阴极厚度和电流密度的影响。该一维模型和参数集可用于三维电池结构设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信