{"title":"Analysis and Validation of the Network Pharmacology of the Mechanism of Glycyrrhetinic Acid for the Treatment of High-Altitude Pulmonary Hypertension","authors":"Zulipiye Ainaisi, Yang Tao, Dilinuer Maimaitiyiming, Fang Lei, Yiliyaer Nijiati, Liao Xijiang, Ainiwaer Aikemu","doi":"10.1155/2024/1552878","DOIUrl":null,"url":null,"abstract":"<p>Glycyrrhetinic acid (GA) is a pentacyclic triterpene component in <i>Glycyrrhize glabra</i> L, it has demonstrated an inhibitive effect on high-altitude pulmonary hypertension (HAPH), but the molecular action is still not known. We aimed to explore the mechanism of GA for the treatment of HAPH based on network pharmacology and molecular docking method. Cell experiment validation was also conducted. The targets for GA were screened using the Swiss Target Prediction and Batman databases. The HAPH-related targets were obtained using the GeneCards and OMIM databases. The common targets for diseases and drugs were obtained using a Venn diagram. The core targets were screened using the String database. Then, a component-target-disease diagram and protein–protein interaction (PPI) network mutual assistance diagram were developed using Cytoscape3.9.1 software. GO functional and KEGG pathway enrichment analyses were conducted using the Metascape database. Finally, molecular docking of the target and its corresponding active components were performed using Autodock software. A total of 68 common targets for glycyrrhetinic acid high-altitude pulmonary hypertension were screened out. The core targets include PTGS1, MMP1, SERPINA6, and nitric oxide synthase (NOS2), involving PPAR signal pathway, human cytomegalovirus infection, IL-17 signal pathway, proteoglycans in cancer, and other pathways. The molecular docking affinity was −8.4 kcal·mol<sup>−1</sup> in average, indicating that GA has a good binding stability with key target proteins. In the PDGF-BB-induced PASMC proliferation model, PASMC proliferation and the p-p38, p38, p-ERK1/2, and ERK1/2 protein expression were inhibited. The pharmacological mechanism of GA for the treatment of HAPH was characterized by multi-target and multi pathway. GA may serve as a promising therapeutic candidate for HAPH but still needs further <i>in vivo/in vitro</i> experiment.</p>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/1552878","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glycyrrhetinic acid (GA) is a pentacyclic triterpene component in Glycyrrhize glabra L, it has demonstrated an inhibitive effect on high-altitude pulmonary hypertension (HAPH), but the molecular action is still not known. We aimed to explore the mechanism of GA for the treatment of HAPH based on network pharmacology and molecular docking method. Cell experiment validation was also conducted. The targets for GA were screened using the Swiss Target Prediction and Batman databases. The HAPH-related targets were obtained using the GeneCards and OMIM databases. The common targets for diseases and drugs were obtained using a Venn diagram. The core targets were screened using the String database. Then, a component-target-disease diagram and protein–protein interaction (PPI) network mutual assistance diagram were developed using Cytoscape3.9.1 software. GO functional and KEGG pathway enrichment analyses were conducted using the Metascape database. Finally, molecular docking of the target and its corresponding active components were performed using Autodock software. A total of 68 common targets for glycyrrhetinic acid high-altitude pulmonary hypertension were screened out. The core targets include PTGS1, MMP1, SERPINA6, and nitric oxide synthase (NOS2), involving PPAR signal pathway, human cytomegalovirus infection, IL-17 signal pathway, proteoglycans in cancer, and other pathways. The molecular docking affinity was −8.4 kcal·mol−1 in average, indicating that GA has a good binding stability with key target proteins. In the PDGF-BB-induced PASMC proliferation model, PASMC proliferation and the p-p38, p38, p-ERK1/2, and ERK1/2 protein expression were inhibited. The pharmacological mechanism of GA for the treatment of HAPH was characterized by multi-target and multi pathway. GA may serve as a promising therapeutic candidate for HAPH but still needs further in vivo/in vitro experiment.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality