In-Situ Grown Nanohydroxyapatite on Graphene Oxide Nanoscrolls for Modulated Physicochemical Properties of Poly (Caprolactone) Composites

Macromol Pub Date : 2024-05-11 DOI:10.3390/macromol4020017
L. Mambiri, Gabrielle Broussard, Ja’Caleb Smith, D. Depan
{"title":"In-Situ Grown Nanohydroxyapatite on Graphene Oxide Nanoscrolls for Modulated Physicochemical Properties of Poly (Caprolactone) Composites","authors":"L. Mambiri, Gabrielle Broussard, Ja’Caleb Smith, D. Depan","doi":"10.3390/macromol4020017","DOIUrl":null,"url":null,"abstract":"Polymer composites with exceptional bioactivity and controlled in vitro degradation are crucial in tissue engineering. A promising approach involves combining graphene oxide nanoscrolls (GONSs) and nanohydroxyapatite (nHA) with polycaprolactone (PCL). The synergy of these components enables the mineralization of nHA within GONSs through a two-step process: first, oxygen-containing anionic groups in the GONSs anchor Ca2+ ions, followed by the formation of dispersed nHA through chelation with CaHPO42− via electrovalent bonding. A thermal analysis of the scaffolds’ morphology and microstructure was conducted via DSC and SEM imaging. Its enhanced physical properties are attributed to interactions between PCL and nHA–GONSs, as confirmed by an FTIR analysis showing strong interfacial bonding. Enzymatic degradation studies demonstrated reduced weight loss in PCL–nHA–GONS composites over 21 days, highlighting GONSs’ role in enhancing dimensional stability and reinforcement. An EDS analysis post-degradation revealed increased Ca2+ deposition on scaffolds with nHA–GONSs, indicating improved biopolymer–bioceramic interaction facilitated by the GONSs’ scrolled structure. This research offers a straightforward yet effective method for functionalizing GONSs with biologically beneficial nHA, potentially advancing graphene-based biomaterial development.","PeriodicalId":510296,"journal":{"name":"Macromol","volume":" March","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol4020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer composites with exceptional bioactivity and controlled in vitro degradation are crucial in tissue engineering. A promising approach involves combining graphene oxide nanoscrolls (GONSs) and nanohydroxyapatite (nHA) with polycaprolactone (PCL). The synergy of these components enables the mineralization of nHA within GONSs through a two-step process: first, oxygen-containing anionic groups in the GONSs anchor Ca2+ ions, followed by the formation of dispersed nHA through chelation with CaHPO42− via electrovalent bonding. A thermal analysis of the scaffolds’ morphology and microstructure was conducted via DSC and SEM imaging. Its enhanced physical properties are attributed to interactions between PCL and nHA–GONSs, as confirmed by an FTIR analysis showing strong interfacial bonding. Enzymatic degradation studies demonstrated reduced weight loss in PCL–nHA–GONS composites over 21 days, highlighting GONSs’ role in enhancing dimensional stability and reinforcement. An EDS analysis post-degradation revealed increased Ca2+ deposition on scaffolds with nHA–GONSs, indicating improved biopolymer–bioceramic interaction facilitated by the GONSs’ scrolled structure. This research offers a straightforward yet effective method for functionalizing GONSs with biologically beneficial nHA, potentially advancing graphene-based biomaterial development.
在氧化石墨烯纳米卷上原位生长纳米羟基磷灰石以调节聚(己内酯)复合材料的物理化学性能
具有优异生物活性和可控体外降解的聚合物复合材料对组织工程至关重要。一种很有前景的方法是将氧化石墨烯纳米卷(GONSs)和纳米羟基磷灰石(nHA)与聚己内酯(PCL)结合起来。首先,GONSs 中的含氧阴离子基团锚定 Ca2+ 离子,然后通过电价键与 CaHPO42- 螯合形成分散的 nHA。通过 DSC 和 SEM 成像对支架的形态和微观结构进行了热分析。傅立叶变换红外光谱分析证实,PCL 和 nHA-GONS 之间的相互作用增强了支架的物理性能,并显示出很强的界面结合力。酶降解研究表明,PCL-nHA-GONS 复合材料在 21 天内的重量损失减少,这突出表明了 GONS 在增强尺寸稳定性和加固性方面的作用。降解后的 EDS 分析显示,含有 nHA-GONS 的支架上 Ca2+ 沉积增加,这表明 GONS 的卷曲结构促进了生物聚合物与生物陶瓷之间的相互作用。这项研究提供了一种简单而有效的方法,用对生物有益的 nHA 对 GONSs 进行功能化,从而有可能推动石墨烯基生物材料的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信