Johanna Lutz, Yidong Yu, Ann-Katrin Wolf, Andreas Beilhack, Jürgen Groll, Krystyna Albrecht
{"title":"Impact of Surface Functionality on Biodistribution of Gold Nanoparticles in Silkworms","authors":"Johanna Lutz, Yidong Yu, Ann-Katrin Wolf, Andreas Beilhack, Jürgen Groll, Krystyna Albrecht","doi":"10.1002/anbr.202200146","DOIUrl":null,"url":null,"abstract":"<p>To date, animal models are still indispensable for studying biodistribution and elimination of nanomaterials. However, the use of mammals for in vivo experiments faces various challenges including increasing regulatory hurdles and costs. This study aims to validate larvae of the domestic silkworm <i>Bombyx mori</i> as an alternative invertebrate model for preliminary in vivo research. Organ distribution and elimination of gold nanoparticles (AuNPs) are compared with four different surface functionalities in silkworms after systemic administration: AuNPs coated with poly(ethylene glycol) (PEG), with polyglycidols (PGs) that are slightly hydrophobic (PG(alkyl)), positively charged (PG(+)), or negatively charged (PG(−)). Subsequent inductive coupled plasma mass spectrometry 6 or 24 h after AuNPs administration reveals the biodistribution in silkworm hemolymph, midgut, epidermis, and excrements. Even after 24 h incubation, hemolymph contains the highest AuNPs concentrations, independent of surface functionalization indicating a prolonged circulation time and slow distribution into different silkworm organs and tissues. Positively charged PG(+)AuNPs show three times higher concentrations in the midgut and are excreted at the fastest rate when compared to other AuNPs. In the findings, a surface-dependent biodistribution and elimination of AuNPs are indicated in silkworms, and the feasibility of using this inexpensive animal model for time- and cost-effective, preliminary in vivo studies of NPs is confirmed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202200146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202200146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To date, animal models are still indispensable for studying biodistribution and elimination of nanomaterials. However, the use of mammals for in vivo experiments faces various challenges including increasing regulatory hurdles and costs. This study aims to validate larvae of the domestic silkworm Bombyx mori as an alternative invertebrate model for preliminary in vivo research. Organ distribution and elimination of gold nanoparticles (AuNPs) are compared with four different surface functionalities in silkworms after systemic administration: AuNPs coated with poly(ethylene glycol) (PEG), with polyglycidols (PGs) that are slightly hydrophobic (PG(alkyl)), positively charged (PG(+)), or negatively charged (PG(−)). Subsequent inductive coupled plasma mass spectrometry 6 or 24 h after AuNPs administration reveals the biodistribution in silkworm hemolymph, midgut, epidermis, and excrements. Even after 24 h incubation, hemolymph contains the highest AuNPs concentrations, independent of surface functionalization indicating a prolonged circulation time and slow distribution into different silkworm organs and tissues. Positively charged PG(+)AuNPs show three times higher concentrations in the midgut and are excreted at the fastest rate when compared to other AuNPs. In the findings, a surface-dependent biodistribution and elimination of AuNPs are indicated in silkworms, and the feasibility of using this inexpensive animal model for time- and cost-effective, preliminary in vivo studies of NPs is confirmed.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.