Impact of Surface Functionality on Biodistribution of Gold Nanoparticles in Silkworms

IF 4 Q2 ENGINEERING, BIOMEDICAL
Johanna Lutz, Yidong Yu, Ann-Katrin Wolf, Andreas Beilhack, Jürgen Groll, Krystyna Albrecht
{"title":"Impact of Surface Functionality on Biodistribution of Gold Nanoparticles in Silkworms","authors":"Johanna Lutz,&nbsp;Yidong Yu,&nbsp;Ann-Katrin Wolf,&nbsp;Andreas Beilhack,&nbsp;Jürgen Groll,&nbsp;Krystyna Albrecht","doi":"10.1002/anbr.202200146","DOIUrl":null,"url":null,"abstract":"<p>To date, animal models are still indispensable for studying biodistribution and elimination of nanomaterials. However, the use of mammals for in vivo experiments faces various challenges including increasing regulatory hurdles and costs. This study aims to validate larvae of the domestic silkworm <i>Bombyx mori</i> as an alternative invertebrate model for preliminary in vivo research. Organ distribution and elimination of gold nanoparticles (AuNPs) are compared with four different surface functionalities in silkworms after systemic administration: AuNPs coated with poly(ethylene glycol) (PEG), with polyglycidols (PGs) that are slightly hydrophobic (PG(alkyl)), positively charged (PG(+)), or negatively charged (PG(−)). Subsequent inductive coupled plasma mass spectrometry 6 or 24 h after AuNPs administration reveals the biodistribution in silkworm hemolymph, midgut, epidermis, and excrements. Even after 24 h incubation, hemolymph contains the highest AuNPs concentrations, independent of surface functionalization indicating a prolonged circulation time and slow distribution into different silkworm organs and tissues. Positively charged PG(+)AuNPs show three times higher concentrations in the midgut and are excreted at the fastest rate when compared to other AuNPs. In the findings, a surface-dependent biodistribution and elimination of AuNPs are indicated in silkworms, and the feasibility of using this inexpensive animal model for time- and cost-effective, preliminary in vivo studies of NPs is confirmed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202200146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202200146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To date, animal models are still indispensable for studying biodistribution and elimination of nanomaterials. However, the use of mammals for in vivo experiments faces various challenges including increasing regulatory hurdles and costs. This study aims to validate larvae of the domestic silkworm Bombyx mori as an alternative invertebrate model for preliminary in vivo research. Organ distribution and elimination of gold nanoparticles (AuNPs) are compared with four different surface functionalities in silkworms after systemic administration: AuNPs coated with poly(ethylene glycol) (PEG), with polyglycidols (PGs) that are slightly hydrophobic (PG(alkyl)), positively charged (PG(+)), or negatively charged (PG(−)). Subsequent inductive coupled plasma mass spectrometry 6 or 24 h after AuNPs administration reveals the biodistribution in silkworm hemolymph, midgut, epidermis, and excrements. Even after 24 h incubation, hemolymph contains the highest AuNPs concentrations, independent of surface functionalization indicating a prolonged circulation time and slow distribution into different silkworm organs and tissues. Positively charged PG(+)AuNPs show three times higher concentrations in the midgut and are excreted at the fastest rate when compared to other AuNPs. In the findings, a surface-dependent biodistribution and elimination of AuNPs are indicated in silkworms, and the feasibility of using this inexpensive animal model for time- and cost-effective, preliminary in vivo studies of NPs is confirmed.

Abstract Image

表面功能对金纳米粒子在蚕体内生物分布的影响
迄今为止,动物模型在研究纳米材料的生物分布和消除方面仍然不可或缺。然而,使用哺乳动物进行体内实验面临着各种挑战,包括越来越多的监管障碍和成本。本研究旨在验证家蚕幼虫是否可作为无脊椎动物模型用于初步体内研究。比较了四种不同表面功能的金纳米粒子(AuNPs)在家蚕体内给药后的器官分布和消除情况:AuNPs 表面涂有聚乙二醇 (PEG)、轻微疏水的聚缩水甘油 (PG)(PG(烷基))、带正电荷的聚缩水甘油 (PG(+))或带负电荷的聚缩水甘油 (PG(-))。给蚕施用 AuNPs 6 或 24 小时后进行的感应耦合等离子体质谱分析显示了 AuNPs 在蚕血淋巴、中肠、表皮和排泄物中的生物分布。即使在孵育 24 小时后,血淋巴中的 AuNPs 浓度仍然最高,与表面功能化无关,这表明 AuNPs 的循环时间较长,在家蚕不同器官和组织中的分布较慢。带正电荷的 PG(+)AuNPs 在中肠的浓度比其他 AuNPs 高三倍,排泄速度也最快。研究结果表明,AuNPs 在蚕体内的生物分布和消除取决于蚕的表面,并证实了利用这种廉价的动物模型对 NPs 进行省时、经济、初步的体内研究的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信