Peiyan He, Yong Yan, Guoying Zhu, Ze Zhu, Zhongwen Chen
{"title":"Development and Evaluation of a Multiplex Fluorescence PCR for Salmonella Virulence Genes Analysis","authors":"Peiyan He, Yong Yan, Guoying Zhu, Ze Zhu, Zhongwen Chen","doi":"10.5812/jjm-144579","DOIUrl":null,"url":null,"abstract":"Background: Salmonellosis, a disease caused by Salmonella, is a significant public health concern and economic burden worldwide. The ability of various Salmonella serovars to cause disease is closely linked to the virulence genes they possess. Objectives: The aim of this study was to develop a multiplex fluorescence PCR for detecting ten major virulence genes (ssaR, spvC, pefA, sipA, fimA, sifA, sopE2, sopB, prgH, and stn) in Salmonella. Methods: Primer pairs specific to ten target virulence genes were designed using Primer Premier 5.0 and distributed across two reaction tubes. The multiplex fluorescence PCR was optimized by adjusting one factor at a time. Results: A total of sixty Salmonella strains were analyzed using the newly developed multiplex fluorescence PCR. All strains contained seven or more of the tested virulence genes. The positive rates of virulence genes ssaR, sipA, sopE2, sopB, prgH, and stn were high, each at 100%. The positive rate of sifA was also relatively high at 81.67%. However, the positive rates of spvC at 5% and pefA at 3.33% were relatively low. Conclusions: The newly developed multiplex fluorescence PCR provides a straightforward, cost-effective, and high-throughput solution for detecting virulence genes in Salmonella. It has the potential to become a routine method for analyzing Salmonella virulence genes.","PeriodicalId":17803,"journal":{"name":"Jundishapur Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/jjm-144579","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Salmonellosis, a disease caused by Salmonella, is a significant public health concern and economic burden worldwide. The ability of various Salmonella serovars to cause disease is closely linked to the virulence genes they possess. Objectives: The aim of this study was to develop a multiplex fluorescence PCR for detecting ten major virulence genes (ssaR, spvC, pefA, sipA, fimA, sifA, sopE2, sopB, prgH, and stn) in Salmonella. Methods: Primer pairs specific to ten target virulence genes were designed using Primer Premier 5.0 and distributed across two reaction tubes. The multiplex fluorescence PCR was optimized by adjusting one factor at a time. Results: A total of sixty Salmonella strains were analyzed using the newly developed multiplex fluorescence PCR. All strains contained seven or more of the tested virulence genes. The positive rates of virulence genes ssaR, sipA, sopE2, sopB, prgH, and stn were high, each at 100%. The positive rate of sifA was also relatively high at 81.67%. However, the positive rates of spvC at 5% and pefA at 3.33% were relatively low. Conclusions: The newly developed multiplex fluorescence PCR provides a straightforward, cost-effective, and high-throughput solution for detecting virulence genes in Salmonella. It has the potential to become a routine method for analyzing Salmonella virulence genes.
期刊介绍:
Jundishapur Journal of Microbiology, (JJM) is the official scientific Monthly publication of Ahvaz Jundishapur University of Medical Sciences. JJM is dedicated to the publication of manuscripts on topics concerning all aspects of microbiology. The topics include medical, veterinary and environmental microbiology, molecular investigations and infectious diseases. Aspects of immunology and epidemiology of infectious diseases are also considered.