{"title":"Environmental impacts of Australian pork in 2020 and 2022 determined using lifecycle assessments","authors":"M. Copley, E. McGahan, K. McCormack, S. Wiedemann","doi":"10.1071/an23352","DOIUrl":null,"url":null,"abstract":"Context The Australian pork industry is highly efficient, with a history of ongoing productivity and environmental improvement. The introduction of economy-wide environmental targets require delivering and tracking performance improvement. Aims This study determined carbon footprint (greenhouse gas [GHG] and land use [LU] and direct land use change [dLUC] emissions, reported as kg CO2-e), fossil energy (MJ), freshwater consumption (L), water stress (L H2O-e), land occupation (m2) and eutrophication potential (nitrogen and phosphorus) for Australian pork for 2020 and 2022. Variability between housing, manure management systems, and regions were identified, and systems analysed to determine new options for low-impact pork. Methods In the largest Australian study of its kind, data for ~70% of pigs produced were collected using a stratified design. Using attributional life cycle assessment, impacts were reported per kilogram of liveweight (LW), post-processed, retail, and boneless, fat-corrected pork. Results are presented as industry averages ± 2 × s.d. Key results Key results were 3.0 ± 0.1 and 3.0 ± 0.1 kg CO2-e GHG, 0.4 ± 0.07 and 0.3 ± 0.03 kg CO2-e LU and dLUC, 12.9 ± 0.5 and 13.4 ± 0.5 MJ, 93.8 ± 9.6 and 52.5 ± 3.6 L, 68.4 ± 6.7 and 43.2 ± 3.3 L H2O-e, and 12.0 ± 0.9 and 12.7 ± 0.9 m2/kg LW in 2020 and 2022, respectively. Due to industry growth, total emissions were higher in 2022. Eutrophication potential for Australian pork (2.2 × 10−4 ± 3.0 × 10−5 kg phosphorus and 8.7 × 10−3 ± 3.5 × 10−4 kg nitrogen/kg LW), reported for the first time, was low compared with grazing systems and European piggeries. Conclusions Industry has demonstrated long-term performance improvement, though the rate slowed between 2020 and 2022. Ongoing interventions are required to return to trend. Covered pond, deep litter, and outdoor systems produce lower carbon footprint pork and can provide other environmental benefits from renewable energy, and reduced fossil energy demand. Implications There is potential to further reduce environmental impacts through practice change. If industry is to meet formal targets, investment and proactive policy settings are required to overcome barriers to adoption of existing technology and support the techno-economic case for novel strategies.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"13 7","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/an23352","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Context The Australian pork industry is highly efficient, with a history of ongoing productivity and environmental improvement. The introduction of economy-wide environmental targets require delivering and tracking performance improvement. Aims This study determined carbon footprint (greenhouse gas [GHG] and land use [LU] and direct land use change [dLUC] emissions, reported as kg CO2-e), fossil energy (MJ), freshwater consumption (L), water stress (L H2O-e), land occupation (m2) and eutrophication potential (nitrogen and phosphorus) for Australian pork for 2020 and 2022. Variability between housing, manure management systems, and regions were identified, and systems analysed to determine new options for low-impact pork. Methods In the largest Australian study of its kind, data for ~70% of pigs produced were collected using a stratified design. Using attributional life cycle assessment, impacts were reported per kilogram of liveweight (LW), post-processed, retail, and boneless, fat-corrected pork. Results are presented as industry averages ± 2 × s.d. Key results Key results were 3.0 ± 0.1 and 3.0 ± 0.1 kg CO2-e GHG, 0.4 ± 0.07 and 0.3 ± 0.03 kg CO2-e LU and dLUC, 12.9 ± 0.5 and 13.4 ± 0.5 MJ, 93.8 ± 9.6 and 52.5 ± 3.6 L, 68.4 ± 6.7 and 43.2 ± 3.3 L H2O-e, and 12.0 ± 0.9 and 12.7 ± 0.9 m2/kg LW in 2020 and 2022, respectively. Due to industry growth, total emissions were higher in 2022. Eutrophication potential for Australian pork (2.2 × 10−4 ± 3.0 × 10−5 kg phosphorus and 8.7 × 10−3 ± 3.5 × 10−4 kg nitrogen/kg LW), reported for the first time, was low compared with grazing systems and European piggeries. Conclusions Industry has demonstrated long-term performance improvement, though the rate slowed between 2020 and 2022. Ongoing interventions are required to return to trend. Covered pond, deep litter, and outdoor systems produce lower carbon footprint pork and can provide other environmental benefits from renewable energy, and reduced fossil energy demand. Implications There is potential to further reduce environmental impacts through practice change. If industry is to meet formal targets, investment and proactive policy settings are required to overcome barriers to adoption of existing technology and support the techno-economic case for novel strategies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.