Completeness of the systems of Bessel functions of index $-5/2$

IF 1 Q1 MATHEMATICS
R. Khats
{"title":"Completeness of the systems of Bessel functions of index $-5/2$","authors":"R. Khats","doi":"10.15330/cmp.16.1.93-102","DOIUrl":null,"url":null,"abstract":"Let $L^2((0;1);x^4 dx)$ be the weighted Lebesgue space of all measurable functions $f:(0;1)\\rightarrow\\mathbb C$, satisfying $\\int_{0}^1 t^4 |f(t)|^2\\, dt<+\\infty$. Let $J_{-5/2}$ be the Bessel function of the first kind of index $-5/2$ and $(\\rho_k)_{k\\in\\mathbb N}$ be a sequence of distinct nonzero complex numbers. Necessary and sufficient conditions for the completeness of the system $\\big\\{\\rho_k^2\\sqrt{x\\rho_k}J_{-5/2}(x\\rho_k):k\\in\\mathbb N\\big\\}$ in the space $L^2((0;1);x^4 dx)$ are found in terms of an entire function with the set of zeros coinciding with the sequence $(\\rho_k)_{k\\in\\mathbb N}$. In this case, we study an integral representation of some class $E_{4,+}$ of even entire functions of exponential type $\\sigma\\le 1$. This complements similar results on approximation properties of the systems of Bessel functions of negative half-integer index less than $-1$, due to B. Vynnyts'kyi, V. Dilnyi, O. Shavala and the author.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.16.1.93-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $L^2((0;1);x^4 dx)$ be the weighted Lebesgue space of all measurable functions $f:(0;1)\rightarrow\mathbb C$, satisfying $\int_{0}^1 t^4 |f(t)|^2\, dt<+\infty$. Let $J_{-5/2}$ be the Bessel function of the first kind of index $-5/2$ and $(\rho_k)_{k\in\mathbb N}$ be a sequence of distinct nonzero complex numbers. Necessary and sufficient conditions for the completeness of the system $\big\{\rho_k^2\sqrt{x\rho_k}J_{-5/2}(x\rho_k):k\in\mathbb N\big\}$ in the space $L^2((0;1);x^4 dx)$ are found in terms of an entire function with the set of zeros coinciding with the sequence $(\rho_k)_{k\in\mathbb N}$. In this case, we study an integral representation of some class $E_{4,+}$ of even entire functions of exponential type $\sigma\le 1$. This complements similar results on approximation properties of the systems of Bessel functions of negative half-integer index less than $-1$, due to B. Vynnyts'kyi, V. Dilnyi, O. Shavala and the author.
指数 $-5/2$ 的贝塞尔函数系统的完备性
让 $L^2((0;1);x^4 dx)$ 是所有可测函数 $f:(0;1)\rightarrow\mathbb C$ 的加权 Lebesgue 空间,满足 $\int_{0}^1 t^4 |f(t)|^2\, dt<+\infty$.让 $J_{-5/2}$ 是索引为 $-5/2$ 的第一类贝塞尔函数,$(\rho_k)_{k/in/mathbb N}$ 是一系列不同的非零复数。在空间 $L^2((0;1);x^4dx)$中,系统 $\big\{rho_k^2\sqrt{x\rho_k}J_{-5/2}(x\rho_k):k\in\mathbb N\big\}$ 的完备性的必要条件和充分条件是通过全函数找到的,全函数的零点集与序列 $(\rho_k)_{k\in\mathbb N}$ 重合。在这种情况下,我们研究了指数型 $\sigma\le 1$ 偶整函数的某类 $E_{4,+}$ 的积分表示。这是对 B. Vynnyts'kyi、V. Dilnyi、O. Shavala 和作者关于负半整数指数小于 $-1$ 的贝塞尔函数系统近似性质的类似结果的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信