{"title":"Dynamic analysis of tethered defunct satellites with solar panels","authors":"Rui Qi, Yang Zhang, Heng Jiang, Rui Zhong","doi":"10.1007/s42064-024-0206-8","DOIUrl":null,"url":null,"abstract":"<div><p>A precise dynamic model for towing and removing a defunct satellite with solar panels in orbit using a tethered net often has low computational efficiency owing to the complex contact and collision between the net and panels, which is not conducive to research. To solve this problem, a “single main tether–multiple subtether” bifurcation structure with beads was employed as the tethered net model. This study investigated the dynamics of tethered defunct satellites with solar panels, particularly the behavior of the attitude of the tethered satellite, oscillation of the main tether, and vibration of solar panels under different conditions. The results showed that different attachment configurations of the subtethers and the flexibility of the main tether have an evident impact on the dynamic characteristics of the system.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0206-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A precise dynamic model for towing and removing a defunct satellite with solar panels in orbit using a tethered net often has low computational efficiency owing to the complex contact and collision between the net and panels, which is not conducive to research. To solve this problem, a “single main tether–multiple subtether” bifurcation structure with beads was employed as the tethered net model. This study investigated the dynamics of tethered defunct satellites with solar panels, particularly the behavior of the attitude of the tethered satellite, oscillation of the main tether, and vibration of solar panels under different conditions. The results showed that different attachment configurations of the subtethers and the flexibility of the main tether have an evident impact on the dynamic characteristics of the system.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.