{"title":"Preparation and evaluation of decellularized epineurium as an anti-Adhesive biofilm in peripheral nerve repair","authors":"Xiao Li, Meihan Tao, Liang Quan, Hengtong Zhang, Yuan Xin, Xixi Wu, Xinyu Fang, Jun Fan, Xiaohong Tian, Xiaohong Wang, Lili Wen, Tianhao Yu, Qiang Ao","doi":"10.1093/rb/rbae054","DOIUrl":null,"url":null,"abstract":"\n Following peripheral nerve anastomosis, the anastomotic site is prone to adhesions with surrounding tissues, consequently impacting the effectiveness of nerve repair. This study explores the development and efficacy of a decellularized epineurium as an anti-adhesive biofilm in peripheral nerve repair. Firstly, the entire epineurium was extracted from fresh porcine sciatic nerves, followed by a decellularization process. The decellularization efficiency was then thoroughly assessed. Subsequently, the decellularized epineurium underwent proteomic analysis to determine the remaining bioactive components. To ensure biosafety, the decellularized epineurium underwent cytotoxicity assays, hemolysis tests, cell affinity assays, and assessments of immune response following subcutaneous implantation. Finally, the functionality of the biofilm was determined using a sciatic nerve transection and anastomosis model in rat. The result indicated that the decellularization process effectively removed cellular components from the epineurium while preserving a number of bioactive molecules, and this decellularized epineurium was effective in preventing adhesion while promoting nerve repairment and functional recovery. In conclusion, the decellularized epineurium represents a novel and promising anti-adhesion biofilm for enhancing surgical outcomes of peripheral nerve repair.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae054","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Following peripheral nerve anastomosis, the anastomotic site is prone to adhesions with surrounding tissues, consequently impacting the effectiveness of nerve repair. This study explores the development and efficacy of a decellularized epineurium as an anti-adhesive biofilm in peripheral nerve repair. Firstly, the entire epineurium was extracted from fresh porcine sciatic nerves, followed by a decellularization process. The decellularization efficiency was then thoroughly assessed. Subsequently, the decellularized epineurium underwent proteomic analysis to determine the remaining bioactive components. To ensure biosafety, the decellularized epineurium underwent cytotoxicity assays, hemolysis tests, cell affinity assays, and assessments of immune response following subcutaneous implantation. Finally, the functionality of the biofilm was determined using a sciatic nerve transection and anastomosis model in rat. The result indicated that the decellularization process effectively removed cellular components from the epineurium while preserving a number of bioactive molecules, and this decellularized epineurium was effective in preventing adhesion while promoting nerve repairment and functional recovery. In conclusion, the decellularized epineurium represents a novel and promising anti-adhesion biofilm for enhancing surgical outcomes of peripheral nerve repair.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.