Analytical insights into the behavior of finite amplitude waves in plasma fluid dynamics

Reem Altuijri, A. Abdel‐Aty, K. Nisar, Mostafa M. A. Khater
{"title":"Analytical insights into the behavior of finite amplitude waves in plasma fluid dynamics","authors":"Reem Altuijri, A. Abdel‐Aty, K. Nisar, Mostafa M. A. Khater","doi":"10.1142/s0217984924503883","DOIUrl":null,"url":null,"abstract":"This study introduces innovative analytical solutions for the [Formula: see text]-dimensional nonlinear Jaulent–Miodek ([Formula: see text]) equation, a governing model elucidating the propagation characteristics of nonlinear shallow water waves with finite amplitude. Employing analytical methodologies such as the Khater II and unified methods, alongside the Adomian decomposition method as a semi-analytical approach, series solutions are derived with the primary aim of elucidating the fundamental physics dictating the evolution of [Formula: see text] waves. Within the realm of nonlinear fluid dynamics, the [Formula: see text] equation encapsulates the behavior of irrotational, inviscid, and incompressible fluid flow, wherein nonlinear effects and dispersion intricately balance to yield stable propagating waves. This equation encompasses terms representing nonlinear convection, dispersion, and nonlinearity effects. The analytical methodologies employed in this investigation yield solutions for various instances of the [Formula: see text] equation, demonstrating convergence, accuracy, and computational efficiency. The outcomes reveal that the Adomian decomposition method yields solutions congruent with those obtained through analytical techniques, thereby affirming the precision of the derived solutions. Furthermore, this study advances the comprehension of the physical implications inherent in the [Formula: see text] equation, serving as a benchmark for evaluating alternative methodologies. The analytical approaches elucidated in this research furnish accessible tools for addressing a diverse array of nonlinear wave equations in mathematical physics and engineering domains. In summary, the introduction of novel exact and approximate solutions significantly contributes to the advancement of knowledge pertaining to the [Formula: see text]-dimensional [Formula: see text] equation. The ramifications of this research extend to the modeling of shallow water waves, offering invaluable insights for researchers and practitioners engaged in the field.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":"51 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924503883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces innovative analytical solutions for the [Formula: see text]-dimensional nonlinear Jaulent–Miodek ([Formula: see text]) equation, a governing model elucidating the propagation characteristics of nonlinear shallow water waves with finite amplitude. Employing analytical methodologies such as the Khater II and unified methods, alongside the Adomian decomposition method as a semi-analytical approach, series solutions are derived with the primary aim of elucidating the fundamental physics dictating the evolution of [Formula: see text] waves. Within the realm of nonlinear fluid dynamics, the [Formula: see text] equation encapsulates the behavior of irrotational, inviscid, and incompressible fluid flow, wherein nonlinear effects and dispersion intricately balance to yield stable propagating waves. This equation encompasses terms representing nonlinear convection, dispersion, and nonlinearity effects. The analytical methodologies employed in this investigation yield solutions for various instances of the [Formula: see text] equation, demonstrating convergence, accuracy, and computational efficiency. The outcomes reveal that the Adomian decomposition method yields solutions congruent with those obtained through analytical techniques, thereby affirming the precision of the derived solutions. Furthermore, this study advances the comprehension of the physical implications inherent in the [Formula: see text] equation, serving as a benchmark for evaluating alternative methodologies. The analytical approaches elucidated in this research furnish accessible tools for addressing a diverse array of nonlinear wave equations in mathematical physics and engineering domains. In summary, the introduction of novel exact and approximate solutions significantly contributes to the advancement of knowledge pertaining to the [Formula: see text]-dimensional [Formula: see text] equation. The ramifications of this research extend to the modeling of shallow water waves, offering invaluable insights for researchers and practitioners engaged in the field.
等离子流体动力学中有限振幅波行为的分析见解
本研究介绍了[公式:见正文]-维非线性 Jaulent-Miodek ([公式:见正文])方程的创新分析解法,该方程是一个阐明具有有限振幅的非线性浅水波传播特性的调控模型。利用 Khater II 和统一法等分析方法,以及作为半分析方法的阿多米分解法,得出了系列解,其主要目的是阐明决定[公式:见正文]波演变的基本物理学原理。在非线性流体动力学领域,[公式:见正文]方程概括了非旋转、不粘性和不可压缩流体流动的行为,其中非线性效应和分散性错综复杂地平衡产生了稳定的传播波。该方程包含代表非线性对流、色散和非线性效应的术语。本研究采用的分析方法得出了[公式:见正文]方程各种实例的解,证明了其收敛性、准确性和计算效率。研究结果表明,阿多米分解法得到的解与通过分析技术得到的解一致,从而肯定了推导解的精确性。此外,这项研究还促进了对[公式:见正文]方程内在物理意义的理解,为评估替代方法提供了基准。本研究阐明的分析方法为解决数学物理和工程领域的各种非线性波方程提供了可利用的工具。总之,新的精确解和近似解的引入极大地促进了有关[公式:见正文]二维[公式:见正文]方程知识的发展。这项研究的影响扩展到浅水波的建模,为该领域的研究人员和从业人员提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信