Tackling unbalanced datasets for yellow and brown rust detection in wheat

Carmen Cuenca-Romero, O. E. Apolo-Apolo, Jaime Nolasco Rodríguez Vázquez, Gregorio Egea, M. Pérez-Ruiz
{"title":"Tackling unbalanced datasets for yellow and brown rust detection in wheat","authors":"Carmen Cuenca-Romero, O. E. Apolo-Apolo, Jaime Nolasco Rodríguez Vázquez, Gregorio Egea, M. Pérez-Ruiz","doi":"10.3389/fpls.2024.1392409","DOIUrl":null,"url":null,"abstract":"This study evaluates the efficacy of hyperspectral data for detecting yellow and brown rust in wheat, employing machine learning models and the SMOTE (Synthetic Minority Oversampling Technique) augmentation technique to tackle unbalanced datasets. Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Naïve Bayes (GNB) models were assessed. Overall, SVM and RF models showed higher accuracies, particularly when utilizing SMOTE-enhanced datasets. The RF model achieved 70% accuracy in detecting yellow rust without data alteration. Conversely, for brown rust, the SVM model outperformed others, reaching 63% accuracy with SMOTE applied to the training set. This study highlights the potential of spectral data and machine learning (ML) techniques in plant disease detection. It emphasizes the need for further research in data processing methodologies, particularly in exploring the impact of techniques like SMOTE on model performance.","PeriodicalId":505607,"journal":{"name":"Frontiers in Plant Science","volume":"20 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1392409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the efficacy of hyperspectral data for detecting yellow and brown rust in wheat, employing machine learning models and the SMOTE (Synthetic Minority Oversampling Technique) augmentation technique to tackle unbalanced datasets. Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Naïve Bayes (GNB) models were assessed. Overall, SVM and RF models showed higher accuracies, particularly when utilizing SMOTE-enhanced datasets. The RF model achieved 70% accuracy in detecting yellow rust without data alteration. Conversely, for brown rust, the SVM model outperformed others, reaching 63% accuracy with SMOTE applied to the training set. This study highlights the potential of spectral data and machine learning (ML) techniques in plant disease detection. It emphasizes the need for further research in data processing methodologies, particularly in exploring the impact of techniques like SMOTE on model performance.
解决小麦黄锈病和褐锈病检测数据集不平衡问题
本研究评估了高光谱数据在检测小麦黄锈病和褐锈病方面的功效,采用了机器学习模型和 SMOTE(合成少数过采样技术)增强技术来处理不平衡数据集。对人工神经网络(ANN)、支持向量机(SVM)、随机森林(RF)和高斯奈夫贝叶斯(GNB)模型进行了评估。总体而言,SVM 和 RF 模型的准确率较高,尤其是在使用 SMOTE 增强数据集时。RF 模型在不修改数据的情况下检测黄锈病的准确率达到了 70%。相反,对于棕色锈病,SVM 模型的表现优于其他模型,在将 SMOTE 应用于训练集时,准确率达到 63%。这项研究强调了光谱数据和机器学习(ML)技术在植物病害检测中的潜力。它强调了进一步研究数据处理方法的必要性,特别是探索 SMOTE 等技术对模型性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信