{"title":"The \\(C^*\\)-algebra of the Mautner group","authors":"Hedi Regeiba, Jean Ludwig","doi":"10.1007/s43036-024-00348-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(M_\\theta =({\\mathbb {R}} < imes {\\mathbb {C}}^2, \\underset{\\theta }{\\cdot }) \\ (\\theta \\)</span> an irrational number), be the Mautner group. We describe the <span>\\(C^*\\)</span>-algebra of <span>\\(M_\\theta \\)</span> as a subalgebra of <span>\\(C_0({\\mathbb {C}}^2,{\\mathcal {B}}(L^{2}({\\mathbb {R}}))) \\)</span></p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00348-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00348-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(M_\theta =({\mathbb {R}} < imes {\mathbb {C}}^2, \underset{\theta }{\cdot }) \ (\theta \) an irrational number), be the Mautner group. We describe the \(C^*\)-algebra of \(M_\theta \) as a subalgebra of \(C_0({\mathbb {C}}^2,{\mathcal {B}}(L^{2}({\mathbb {R}}))) \)