{"title":"Integrating challenge-based learning and design thinking in a course of reaction engines for aerospace","authors":"J. L. Díaz Palencia","doi":"10.1177/03064190241254018","DOIUrl":null,"url":null,"abstract":"This study presents an approach to aerospace engineering education based on the integration of challenge-based learning (CBL) and design thinking in a course on reaction engines. The paper describes how this approach addresses the evolving demands of the aerospace sector, particularly the need for sustainable propulsion systems. It provides a sistematic analysis, starting with a literature review that establishes some foundational understanding of CBL and design thinking while highlighting their importance in fostering problem-solving and critical thinking skills among engineering students. The main body of the paper explores the practical application of these methodologies in an aerospace course. It details a series of sessions designed to provide students with basic understanding of sustainable ideas in reaction engines. These sessions encourage students to engage in critical thinking and collaborative problem-solving, aligning with real-world environmental concerns in aerospace propulsion. In addition, we present the students` feedback concerning the classroom sessions based on a semi-structured interview technique to assess the effectiveness of the teaching approach. The feedback, analyzed from these interviews, indicates a positive reception of CBL and design thinking. Students appreciated the interactive nature of the sessions and the emphasis on real-world problem-solving. However, challenges such as balancing theoretical and practical aspects, pacing, and providing clear guidelines were noted for future improvement. The study emphasizes the need for ongoing adaptation and iteration of teaching methodologies, informed by regular student feedback, to ensure their effectiveness in preparing students for future challenges in the aerospace sector.","PeriodicalId":39952,"journal":{"name":"International Journal of Mechanical Engineering Education","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03064190241254018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an approach to aerospace engineering education based on the integration of challenge-based learning (CBL) and design thinking in a course on reaction engines. The paper describes how this approach addresses the evolving demands of the aerospace sector, particularly the need for sustainable propulsion systems. It provides a sistematic analysis, starting with a literature review that establishes some foundational understanding of CBL and design thinking while highlighting their importance in fostering problem-solving and critical thinking skills among engineering students. The main body of the paper explores the practical application of these methodologies in an aerospace course. It details a series of sessions designed to provide students with basic understanding of sustainable ideas in reaction engines. These sessions encourage students to engage in critical thinking and collaborative problem-solving, aligning with real-world environmental concerns in aerospace propulsion. In addition, we present the students` feedback concerning the classroom sessions based on a semi-structured interview technique to assess the effectiveness of the teaching approach. The feedback, analyzed from these interviews, indicates a positive reception of CBL and design thinking. Students appreciated the interactive nature of the sessions and the emphasis on real-world problem-solving. However, challenges such as balancing theoretical and practical aspects, pacing, and providing clear guidelines were noted for future improvement. The study emphasizes the need for ongoing adaptation and iteration of teaching methodologies, informed by regular student feedback, to ensure their effectiveness in preparing students for future challenges in the aerospace sector.
期刊介绍:
The International Journal of Mechanical Engineering Education is aimed at teachers and trainers of mechanical engineering students in higher education and focuses on the discussion of the principles and practices of training professional, technical and mechanical engineers and those in related fields. It encourages articles about new experimental methods, and laboratory techniques, and includes book reviews and highlights of recent articles in this field.