{"title":"Beyond Static Obstacles: Integrating Kalman Filter with Reinforcement Learning for Drone Navigation","authors":"Francesco Marino, Giorgio Guglieri","doi":"10.3390/aerospace11050395","DOIUrl":null,"url":null,"abstract":"Autonomous drones offer immense potential in dynamic environments, but their navigation systems often struggle with moving obstacles. This paper presents a novel approach for drone trajectory planning in such scenarios, combining the Interactive Multiple Model (IMM) Kalman filter with Proximal Policy Optimization (PPO) reinforcement learning (RL). The IMM Kalman filter addresses state estimation challenges by modeling the potential motion patterns of moving objects. This enables accurate prediction of future object positions, even in uncertain environments. The PPO reinforcement learning algorithm then leverages these predictions to optimize the drone’s real-time trajectory. Additionally, the capability of PPO to work with continuous action spaces makes it ideal for the smooth control adjustments required for safe navigation. Our simulation results demonstrate the effectiveness of this combined approach. The drone successfully navigates complex dynamic environments, achieving collision avoidance and goal-oriented behavior. This work highlights the potential of integrating advanced state estimation and reinforcement learning techniques to enhance autonomous drone capabilities in unpredictable settings.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050395","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous drones offer immense potential in dynamic environments, but their navigation systems often struggle with moving obstacles. This paper presents a novel approach for drone trajectory planning in such scenarios, combining the Interactive Multiple Model (IMM) Kalman filter with Proximal Policy Optimization (PPO) reinforcement learning (RL). The IMM Kalman filter addresses state estimation challenges by modeling the potential motion patterns of moving objects. This enables accurate prediction of future object positions, even in uncertain environments. The PPO reinforcement learning algorithm then leverages these predictions to optimize the drone’s real-time trajectory. Additionally, the capability of PPO to work with continuous action spaces makes it ideal for the smooth control adjustments required for safe navigation. Our simulation results demonstrate the effectiveness of this combined approach. The drone successfully navigates complex dynamic environments, achieving collision avoidance and goal-oriented behavior. This work highlights the potential of integrating advanced state estimation and reinforcement learning techniques to enhance autonomous drone capabilities in unpredictable settings.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.