Electrochemical Characterization of Nickel / Gadolinia Doped Ceria Fuel Electrodes under H2/H2O/CO/CO2-Atmospheres

Daniel Esau, Cedric Grosselindemann, S. Sckuhr, F. Kullmann, Adrian Lindner, Zhida Liang, Franz‐Martin Fuchs, A. Weber
{"title":"Electrochemical Characterization of Nickel / Gadolinia Doped Ceria Fuel Electrodes under H2/H2O/CO/CO2-Atmospheres","authors":"Daniel Esau, Cedric Grosselindemann, S. Sckuhr, F. Kullmann, Adrian Lindner, Zhida Liang, Franz‐Martin Fuchs, A. Weber","doi":"10.1149/1945-7111/ad4c10","DOIUrl":null,"url":null,"abstract":"\n Modelling of the co-electrolysis process requires understanding of the underlying reaction pathways under H2/H2O/CO/CO2-atmospheres. These include the electrochemical steam reduction/hydrogen oxidation, the electrochemical CO2 reduction/CO oxidation and their coupling via the catalytic (reverse) water gas shift reaction ((R)WGS). The assumption of a very fast RWGS and therefore neglectable electrochemical CO2 conversion is commonly used to model the co-electrolysis process. In contrast, previous studies on Ni/GDC fuel electrodes suggest that the electrochemical conversion of CO / CO2 can be present in H2/H2O/CO/CO2-atmospheres. To deconvolute surface-related and non-surface-related processes in the impedance response we present results from a complex variation of operating parameters for process identification by the use of electrochemical impedance spectroscopy and the subsequent impedance analysis by the distribution of relaxation times. A physically meaningful equivalent circuit model, based on a single channel transmission line, is then derived. The model enables quantification of the surface reaction resistance under varied C/H-ratios. From a kinetic analysis it is shown that the electrochemical H2/H2O conversion is dominant for y_CO+y_(CO_2 )≤ 50% and electrochemical CO/CO2-conversion onsets from y_CO+y_(CO_2 )≥ 60%.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad4c10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling of the co-electrolysis process requires understanding of the underlying reaction pathways under H2/H2O/CO/CO2-atmospheres. These include the electrochemical steam reduction/hydrogen oxidation, the electrochemical CO2 reduction/CO oxidation and their coupling via the catalytic (reverse) water gas shift reaction ((R)WGS). The assumption of a very fast RWGS and therefore neglectable electrochemical CO2 conversion is commonly used to model the co-electrolysis process. In contrast, previous studies on Ni/GDC fuel electrodes suggest that the electrochemical conversion of CO / CO2 can be present in H2/H2O/CO/CO2-atmospheres. To deconvolute surface-related and non-surface-related processes in the impedance response we present results from a complex variation of operating parameters for process identification by the use of electrochemical impedance spectroscopy and the subsequent impedance analysis by the distribution of relaxation times. A physically meaningful equivalent circuit model, based on a single channel transmission line, is then derived. The model enables quantification of the surface reaction resistance under varied C/H-ratios. From a kinetic analysis it is shown that the electrochemical H2/H2O conversion is dominant for y_CO+y_(CO_2 )≤ 50% and electrochemical CO/CO2-conversion onsets from y_CO+y_(CO_2 )≥ 60%.
掺杂钆铈的镍燃料电极在 H2/H2O/CO/CO2 大气环境下的电化学特性分析
建立共电解过程模型需要了解 H2/H2O/CO/CO2- 气圈下的基本反应途径。其中包括电化学蒸汽还原/氢气氧化、电化学 CO2 还原/CO 氧化以及它们通过催化(反向)水气变换反应((R)WGS)的耦合。假设 RWGS 的速度非常快,因此可忽略电化学 CO2 转化,这一假设通常被用来模拟共电解过程。与此相反,之前对 Ni/GDC 燃料电极的研究表明,在 H2/H2O/CO/CO2- 气圈中可能存在 CO / CO2 的电化学转化。为了消除阻抗响应中与表面相关和非表面相关的过程,我们利用电化学阻抗能谱和随后的弛豫时间分布阻抗分析,提供了复杂的操作参数变化结果,用于识别过程。然后,基于单通道传输线得出了一个具有物理意义的等效电路模型。该模型可以量化不同 C/H 比率下的表面反应电阻。动力学分析表明,y_CO+y_(CO_2 )≤50%时,电化学 H2/H2O 转换占主导地位,y_CO+y_(CO_2 )≥60%时,电化学 CO/CO2- 转换开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信