Structural and non-structural numerical blind prediction of shaking table experimental tests on fixed-base and base-isolated hospitals

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Fabio Mazza, Angelo Donnici, Rodolfo Labernarda
{"title":"Structural and non-structural numerical blind prediction of shaking table experimental tests on fixed-base and base-isolated hospitals","authors":"Fabio Mazza,&nbsp;Angelo Donnici,&nbsp;Rodolfo Labernarda","doi":"10.1002/eqe.4146","DOIUrl":null,"url":null,"abstract":"<p>Base-isolated hospitals are frequently preferred to fixed-base ones because of their improved seismic structural performance. Despite this, the question remains open on the advisability of using this modern seismic protection technology in preference to other conventional solutions, on the grounds of a holistic approach based on limiting non-structural damage as well as continuity of service to the community in the aftermath of an earthquake. Two full-scale four-storey (fixed-base) and three-storey (base-isolated) hospital buildings have been recently built and subjected to three-dimensional shaking table tests at the National Research Institute for Earth Science and Disaster Prevention (Japan), with particular attention to evaluating and classifying functionality of non-structural components and vital medical equipment. A two-phase experimental campaign was carried out considering two earthquakes scaled at different intensity levels and applied along the horizontal and vertical directions. The current study aims to provide results of a numerical structural and non-structural blind prediction of these hospital settings. A homemade numerical code is developed to account for lumped plasticity modelling of steel frame members and variability of the friction coefficient of spherical sliding bearings. Moreover, three non-structural components are modelled in the fixed-base structure: that is, elastic single degree of freedom systems representing two tanks filled with sand at the top floor; elastic beam elements for piping at the third floor; five-element macro-model for the in-plane-out-of-plane nonlinear response of partition walls at the first floor. The identification of predominant vibration periods of the fixed-base structure is carried out using a homemade numerical code based on the continuous wavelet transforms in combination with the complex Morlet wavelet. Finally, the sliding and rocking motion of three items of medical equipment (i.e., incubator at third floor, dialysis machine at second floor and surgical bed at first floor) are analysed by means of a homemade numerical code, considering acceleration time histories of selected structural nodes of the fixed-base structure.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"53 10","pages":"2961-2987"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4146","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Base-isolated hospitals are frequently preferred to fixed-base ones because of their improved seismic structural performance. Despite this, the question remains open on the advisability of using this modern seismic protection technology in preference to other conventional solutions, on the grounds of a holistic approach based on limiting non-structural damage as well as continuity of service to the community in the aftermath of an earthquake. Two full-scale four-storey (fixed-base) and three-storey (base-isolated) hospital buildings have been recently built and subjected to three-dimensional shaking table tests at the National Research Institute for Earth Science and Disaster Prevention (Japan), with particular attention to evaluating and classifying functionality of non-structural components and vital medical equipment. A two-phase experimental campaign was carried out considering two earthquakes scaled at different intensity levels and applied along the horizontal and vertical directions. The current study aims to provide results of a numerical structural and non-structural blind prediction of these hospital settings. A homemade numerical code is developed to account for lumped plasticity modelling of steel frame members and variability of the friction coefficient of spherical sliding bearings. Moreover, three non-structural components are modelled in the fixed-base structure: that is, elastic single degree of freedom systems representing two tanks filled with sand at the top floor; elastic beam elements for piping at the third floor; five-element macro-model for the in-plane-out-of-plane nonlinear response of partition walls at the first floor. The identification of predominant vibration periods of the fixed-base structure is carried out using a homemade numerical code based on the continuous wavelet transforms in combination with the complex Morlet wavelet. Finally, the sliding and rocking motion of three items of medical equipment (i.e., incubator at third floor, dialysis machine at second floor and surgical bed at first floor) are analysed by means of a homemade numerical code, considering acceleration time histories of selected structural nodes of the fixed-base structure.

固定基座和基座隔震医院振动台实验测试的结构和非结构数值盲区预测
与固定基座医院相比,基座隔震医院往往更受青睐,因为它们的抗震结构性能更好。尽管如此,基于限制非结构性破坏以及在地震后继续为社区提供服务的整体方法,是否应优先使用这种现代抗震保护技术,而不是其他传统解决方案,这个问题仍然悬而未决。最近,日本国立地球科学和灾害预防研究所建造了两座完整规模的四层(固定基座)和三层(基座隔震)医院建筑,并对其进行了三维振动台试验,其中特别关注对非结构部件和重要医疗设备的功能进行评估和分类。考虑到两次地震的烈度不同,沿水平和垂直方向进行了两阶段的试验活动。目前的研究旨在提供这些医院的结构和非结构盲区的数值预测结果。我们开发了一种自制的数值代码,以考虑钢框架构件的整体塑性模型和球形滑动轴承摩擦系数的变化。此外,还对固定基础结构中的三个非结构部分进行了建模:即代表顶层两个装满沙子的水箱的弹性单自由度系统;代表三层管道的弹性梁元素;代表一层隔墙平面内-平面外非线性响应的五元素宏模型。利用基于连续小波变换和复莫列特小波的自制数值代码,对固定基座结构的主要振动周期进行了识别。最后,考虑到固定基座结构选定结构节点的加速度时间历程,利用自制数值代码分析了三台医疗设备(即三楼的培养箱、二楼的透析机和一楼的手术床)的滑动和摇摆运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信