Xiaoteng Sun, Lili Gui, Hailun Xie, Yiwen Liu, Kun Xu
{"title":"230-fold Enhancement of second-harmonic generation by coupled double resonances in a dolmen-type gold metasurface","authors":"Xiaoteng Sun, Lili Gui, Hailun Xie, Yiwen Liu, Kun Xu","doi":"10.1063/5.0205205","DOIUrl":null,"url":null,"abstract":"Optical metasurfaces, artificial planar nanostructures composed of subwavelength meta-atoms, have attracted significant attention due to their ability to tailor optical nanoscale properties, making them a versatile platform for shaping light in both linear and nonlinear regimes. This paper reports on the realization of second harmonic generation (SHG) enhancement based on a dolmen-type gold metasurface containing two resonances. Nonlinear scattering theory is employed to numerically investigate the SHG enhancement phenomenon in the resonant metasurface. The periodic dolmen-type gold metasurface introduces a diffraction coupling effect between Fano resonance and surface lattice resonance (SLR), providing strong local-field enhancement and significantly enhancing the nonlinear effect. We analyze the influence of the coupling between Fano resonance and SLR on the SHG intensity and achieve a 230-fold enhancement in SHG intensity compared to the single resonance case by adjusting the periodicity of the metasurface. The SHG-enhanced gold metasurface may find applications in sensing, imaging, optical computing, and integrated nonlinear optics.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0205205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Optical metasurfaces, artificial planar nanostructures composed of subwavelength meta-atoms, have attracted significant attention due to their ability to tailor optical nanoscale properties, making them a versatile platform for shaping light in both linear and nonlinear regimes. This paper reports on the realization of second harmonic generation (SHG) enhancement based on a dolmen-type gold metasurface containing two resonances. Nonlinear scattering theory is employed to numerically investigate the SHG enhancement phenomenon in the resonant metasurface. The periodic dolmen-type gold metasurface introduces a diffraction coupling effect between Fano resonance and surface lattice resonance (SLR), providing strong local-field enhancement and significantly enhancing the nonlinear effect. We analyze the influence of the coupling between Fano resonance and SLR on the SHG intensity and achieve a 230-fold enhancement in SHG intensity compared to the single resonance case by adjusting the periodicity of the metasurface. The SHG-enhanced gold metasurface may find applications in sensing, imaging, optical computing, and integrated nonlinear optics.