How much can personality predict prosocial behavior?

IF 3.6 1区 心理学 Q1 PSYCHOLOGY, SOCIAL
Yngwie Asbjørn Nielsen, Stefan Pfattheicher, Isabel Thielmann
{"title":"How much can personality predict prosocial behavior?","authors":"Yngwie Asbjørn Nielsen, Stefan Pfattheicher, Isabel Thielmann","doi":"10.1177/08902070241251516","DOIUrl":null,"url":null,"abstract":"Explaining prosocial behavior is a central goal in classic and contemporary behavioral science. Here, for the first time, we apply modern machine learning techniques to uncover the full predictive potential that personality traits have for prosocial behavior. We utilize a large-scale dataset ( N = 2707; 81 personality traits) and state-of-the-art statistical models to predict an incentivized measure of prosocial behavior, Social Value Orientation (SVO). We conclude: (1) traits explain 13.9% of the variance in SVO; (2) linear models are sufficient to obtain good prediction; (3) trait–trait interactions do not improve prediction; (4) narrow traits improve prediction beyond basic personality (i.e., the HEXACO); (5) there is a moderate association between the univariate predictive power of a trait and its multivariate predictive power, suggesting that univariate estimates (e.g., Pearson’s correlation) can serve as a useful proxy for multivariate variable importance. We propose that the limited usefulness of nonlinear models may stem from current measurement practices in personality science, which tend to favor linearly related constructs. Overall, our study provides a benchmark for how well personality predicts SVO and charts a course toward better prediction of prosocial behavior.","PeriodicalId":51376,"journal":{"name":"European Journal of Personality","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Personality","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/08902070241251516","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, SOCIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Explaining prosocial behavior is a central goal in classic and contemporary behavioral science. Here, for the first time, we apply modern machine learning techniques to uncover the full predictive potential that personality traits have for prosocial behavior. We utilize a large-scale dataset ( N = 2707; 81 personality traits) and state-of-the-art statistical models to predict an incentivized measure of prosocial behavior, Social Value Orientation (SVO). We conclude: (1) traits explain 13.9% of the variance in SVO; (2) linear models are sufficient to obtain good prediction; (3) trait–trait interactions do not improve prediction; (4) narrow traits improve prediction beyond basic personality (i.e., the HEXACO); (5) there is a moderate association between the univariate predictive power of a trait and its multivariate predictive power, suggesting that univariate estimates (e.g., Pearson’s correlation) can serve as a useful proxy for multivariate variable importance. We propose that the limited usefulness of nonlinear models may stem from current measurement practices in personality science, which tend to favor linearly related constructs. Overall, our study provides a benchmark for how well personality predicts SVO and charts a course toward better prediction of prosocial behavior.
人格在多大程度上能预测亲社会行为?
解释亲社会行为是经典和当代行为科学的核心目标。在这里,我们首次应用现代机器学习技术来揭示人格特质对亲社会行为的全部预测潜力。我们利用大规模数据集(N = 2707;81 种人格特质)和最先进的统计模型来预测亲社会行为的激励措施--社会价值取向(SVO)。我们得出以下结论(1) 特质解释了 SVO 中 13.9% 的变异;(2) 线性模型足以获得良好的预测效果;(3) 特质与特质之间的交互作用不会提高预测效果;(4) 狭义特质提高了基本人格(即 HEXACO)之外的预测效果;(5) 特质与特质之间的交互作用不会提高预测效果;(6) 特质与特质之间的交互作用不会提高预测效果、(5)特质的单变量预测能力与其多变量预测能力之间存在适度关联,这表明单变量估计值(如皮尔逊相关性)可以作为多变量重要性的有用替代。我们认为,非线性模型的有限实用性可能源于当前人格科学的测量实践,即倾向于线性相关的建构。总之,我们的研究为人格如何预测 SVO 提供了一个基准,并为更好地预测亲社会行为指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Personality
European Journal of Personality PSYCHOLOGY, SOCIAL-
CiteScore
11.90
自引率
8.50%
发文量
48
期刊介绍: It is intended that the journal reflects all areas of current personality psychology. The Journal emphasizes (1) human individuality as manifested in cognitive processes, emotional and motivational functioning, and their physiological and genetic underpinnings, and personal ways of interacting with the environment, (2) individual differences in personality structure and dynamics, (3) studies of intelligence and interindividual differences in cognitive functioning, and (4) development of personality differences as revealed by cross-sectional and longitudinal studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信