Yngwie Asbjørn Nielsen, Stefan Pfattheicher, Isabel Thielmann
{"title":"How much can personality predict prosocial behavior?","authors":"Yngwie Asbjørn Nielsen, Stefan Pfattheicher, Isabel Thielmann","doi":"10.1177/08902070241251516","DOIUrl":null,"url":null,"abstract":"Explaining prosocial behavior is a central goal in classic and contemporary behavioral science. Here, for the first time, we apply modern machine learning techniques to uncover the full predictive potential that personality traits have for prosocial behavior. We utilize a large-scale dataset ( N = 2707; 81 personality traits) and state-of-the-art statistical models to predict an incentivized measure of prosocial behavior, Social Value Orientation (SVO). We conclude: (1) traits explain 13.9% of the variance in SVO; (2) linear models are sufficient to obtain good prediction; (3) trait–trait interactions do not improve prediction; (4) narrow traits improve prediction beyond basic personality (i.e., the HEXACO); (5) there is a moderate association between the univariate predictive power of a trait and its multivariate predictive power, suggesting that univariate estimates (e.g., Pearson’s correlation) can serve as a useful proxy for multivariate variable importance. We propose that the limited usefulness of nonlinear models may stem from current measurement practices in personality science, which tend to favor linearly related constructs. Overall, our study provides a benchmark for how well personality predicts SVO and charts a course toward better prediction of prosocial behavior.","PeriodicalId":51376,"journal":{"name":"European Journal of Personality","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Personality","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/08902070241251516","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, SOCIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Explaining prosocial behavior is a central goal in classic and contemporary behavioral science. Here, for the first time, we apply modern machine learning techniques to uncover the full predictive potential that personality traits have for prosocial behavior. We utilize a large-scale dataset ( N = 2707; 81 personality traits) and state-of-the-art statistical models to predict an incentivized measure of prosocial behavior, Social Value Orientation (SVO). We conclude: (1) traits explain 13.9% of the variance in SVO; (2) linear models are sufficient to obtain good prediction; (3) trait–trait interactions do not improve prediction; (4) narrow traits improve prediction beyond basic personality (i.e., the HEXACO); (5) there is a moderate association between the univariate predictive power of a trait and its multivariate predictive power, suggesting that univariate estimates (e.g., Pearson’s correlation) can serve as a useful proxy for multivariate variable importance. We propose that the limited usefulness of nonlinear models may stem from current measurement practices in personality science, which tend to favor linearly related constructs. Overall, our study provides a benchmark for how well personality predicts SVO and charts a course toward better prediction of prosocial behavior.
期刊介绍:
It is intended that the journal reflects all areas of current personality psychology. The Journal emphasizes (1) human individuality as manifested in cognitive processes, emotional and motivational functioning, and their physiological and genetic underpinnings, and personal ways of interacting with the environment, (2) individual differences in personality structure and dynamics, (3) studies of intelligence and interindividual differences in cognitive functioning, and (4) development of personality differences as revealed by cross-sectional and longitudinal studies.