{"title":"Evaluation of Steroid-Induced Osteoporosis Prevention Using Tracing Reports in Collaboration between Hospitals and Community Pharmacists","authors":"Nonoko Ishihara, Shuji Yamashita, Shizuno Seiki, Keito Tsutsui, Hiroko Kato-Hayashi, Shuji Sakurai, Kyoko Niwa, Takuyoshi Kawai, Junko Kai, Akio Suzuki, Hideki Hayashi","doi":"10.3390/pharmacy12030080","DOIUrl":null,"url":null,"abstract":"Glucocorticoid-induced osteoporosis (GIOP) is a side effect of glucocorticoid (GC) treatment; however, despite established prevention guidelines in various countries, a gap persists between these guidelines and clinical practice. To address this gap, we implemented a collaborative intervention between hospitals and community pharmacists, aiming to assess its effectiveness. Pharmacists recommended to the prescribing doctor osteoporosis treatment for patients who did not undergo osteoporosis treatment with a fracture risk score of ≥3 via tracing reports (TRs), between 15 December 2021, and 21 January 2022. Data were extracted from electronic medical records, including prescriptions, concomitant medications, reasons for not pursuing osteoporosis treatment, and TR contents. Of 391 evaluated patients, 45 were eligible for TRs, with 34 (75.6%) being males. Prednisolone was the most common GCs administered, and urology was the predominant treatment department. Among the 45 patients who received TRs, prescription suggestions were accepted for 19 (42.2%). After undertaking the intervention, guideline adherence significantly increased from 87% to 92.5%. This improvement indicates that TRs effectively bridged the evidence–practice gap in GIOP prevention among GC patients, suggesting their potential utility. Expansion of this initiative is warranted to further prevent GIOP.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"49 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pharmacy12030080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a side effect of glucocorticoid (GC) treatment; however, despite established prevention guidelines in various countries, a gap persists between these guidelines and clinical practice. To address this gap, we implemented a collaborative intervention between hospitals and community pharmacists, aiming to assess its effectiveness. Pharmacists recommended to the prescribing doctor osteoporosis treatment for patients who did not undergo osteoporosis treatment with a fracture risk score of ≥3 via tracing reports (TRs), between 15 December 2021, and 21 January 2022. Data were extracted from electronic medical records, including prescriptions, concomitant medications, reasons for not pursuing osteoporosis treatment, and TR contents. Of 391 evaluated patients, 45 were eligible for TRs, with 34 (75.6%) being males. Prednisolone was the most common GCs administered, and urology was the predominant treatment department. Among the 45 patients who received TRs, prescription suggestions were accepted for 19 (42.2%). After undertaking the intervention, guideline adherence significantly increased from 87% to 92.5%. This improvement indicates that TRs effectively bridged the evidence–practice gap in GIOP prevention among GC patients, suggesting their potential utility. Expansion of this initiative is warranted to further prevent GIOP.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.