Hydrogen Spillover Effect in Electrocatalysis: Delving into the Mysteries of the Atomic Migration

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ashish Gaur, Jatin Sharma, HyukSu Han
{"title":"Hydrogen Spillover Effect in Electrocatalysis: Delving into the Mysteries of the Atomic Migration","authors":"Ashish Gaur,&nbsp;Jatin Sharma,&nbsp;HyukSu Han","doi":"10.1002/eem2.12761","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions. A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word “hydrogen spillover.” However, there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect. Currently, the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect. The understanding of material fabrication for hydrogen spillover effect has erupted. Considering these factors, we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication. All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance. In addition, we have attempted to elucidate the spillover paths through the utilization of DFT calculations. Furthermore, we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12761","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12761","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions. A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word “hydrogen spillover.” However, there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect. Currently, the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect. The understanding of material fabrication for hydrogen spillover effect has erupted. Considering these factors, we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication. All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance. In addition, we have attempted to elucidate the spillover paths through the utilization of DFT calculations. Furthermore, we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.

Abstract Image

Abstract Image

电催化中的氢溢出效应:探索原子迁移的奥秘
氢溢出效应最近在电催化氢气进化反应领域引起了广泛关注。氢溢出 "一词的出现为理解氢原子在催化剂表面移动的原子迁移动态行为开辟了一条新途径。然而,目前人们对氢溢出效应还缺乏全面的了解。目前,先进的表征程序为我们提供了越来越多的有用信息,有助于我们更好地掌握氢溢出效应。对氢溢出效应材料制造的了解也在不断深入。考虑到这些因素,我们努力回顾了已发表的大部分有关氢溢出效应的文章,并仔细分析了材料制造方面的问题。我们的注意力全部集中在提高氢气进化反应性能的分子途径上。此外,我们还尝试利用 DFT 计算来阐明溢出路径。此外,我们还提供了一些初步研究建议,并强调了该研究领域仍需面对的机遇和障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信