{"title":"Hydrogen Spillover Effect in Electrocatalysis: Delving into the Mysteries of the Atomic Migration","authors":"Ashish Gaur, Jatin Sharma, HyukSu Han","doi":"10.1002/eem2.12761","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions. A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word “hydrogen spillover.” However, there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect. Currently, the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect. The understanding of material fabrication for hydrogen spillover effect has erupted. Considering these factors, we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication. All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance. In addition, we have attempted to elucidate the spillover paths through the utilization of DFT calculations. Furthermore, we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12761","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12761","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions. A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word “hydrogen spillover.” However, there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect. Currently, the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect. The understanding of material fabrication for hydrogen spillover effect has erupted. Considering these factors, we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication. All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance. In addition, we have attempted to elucidate the spillover paths through the utilization of DFT calculations. Furthermore, we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.