Optimal error estimates of a decoupled finite element scheme for the unsteady inductionless MHD equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaodi Zhang, Shitian Dong
{"title":"Optimal error estimates of a decoupled finite element scheme for the unsteady inductionless MHD equations","authors":"Xiaodi Zhang, Shitian Dong","doi":"10.1002/num.23108","DOIUrl":null,"url":null,"abstract":"This article focuses on a new and optimal error analysis of a decoupled finite element scheme for the inductionless magnetohydrodynamic (MHD) equations. The method uses the classical inf‐sup stable Mini/Taylor‐Hood (Mini/TH) finite element pairs to appropriate the velocity and pressure, and Raviart–Thomas (RT) face element to discretize the current density spatially, and the semi‐implicit Euler scheme with an additional stabilized term and some delicate implicit–explicit handling for the coupling terms temporally. The method enjoys some impressive features that it is linear, decoupled, unconditional energy stable and charge‐conservative. Due to the errors from the explicit handing of the coupling terms and the existence of the artificial stabilized term, and the contamination of the lower‐order RT face discretization in the error analysis, the existing theoretical results are not unconditional and optimal. By utilizing the anti‐symmetric structure of the coupling terms and the existence of the extra dissipative term, and the negative‐norm estimate for the mixed Poisson projection, we establish the unconditional and optimal error estimates for all the variables. Numerical tests are presented to illustrate our theoretical findings.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on a new and optimal error analysis of a decoupled finite element scheme for the inductionless magnetohydrodynamic (MHD) equations. The method uses the classical inf‐sup stable Mini/Taylor‐Hood (Mini/TH) finite element pairs to appropriate the velocity and pressure, and Raviart–Thomas (RT) face element to discretize the current density spatially, and the semi‐implicit Euler scheme with an additional stabilized term and some delicate implicit–explicit handling for the coupling terms temporally. The method enjoys some impressive features that it is linear, decoupled, unconditional energy stable and charge‐conservative. Due to the errors from the explicit handing of the coupling terms and the existence of the artificial stabilized term, and the contamination of the lower‐order RT face discretization in the error analysis, the existing theoretical results are not unconditional and optimal. By utilizing the anti‐symmetric structure of the coupling terms and the existence of the extra dissipative term, and the negative‐norm estimate for the mixed Poisson projection, we establish the unconditional and optimal error estimates for all the variables. Numerical tests are presented to illustrate our theoretical findings.
非稳态无诱导多流体力学方程解耦有限元方案的最佳误差估计
本文重点研究了无感应磁流体动力学(MHD)方程解耦有限元方案的新优化误差分析。该方法使用经典的 inf-sup 稳定 Mini/Taylor-Hood (Mini/TH) 有限元对来适配速度和压力,使用 Raviart-Thomas (RT) 面元来离散空间的电流密度,并使用半隐式欧拉方案附加稳定项和一些微妙的隐式-显式耦合项时间处理。该方法具有线性、解耦、无条件能量稳定和电荷保守等显著特点。由于耦合项的显式处理和人工稳定项的存在所带来的误差,以及误差分析中低阶 RT 面离散化的污染,现有的理论结果并不是无条件和最优的。利用耦合项的反对称结构和额外耗散项的存在,以及混合泊松投影的负规范估计,我们建立了所有变量的无条件最优误差估计。为了说明我们的理论发现,我们还进行了数值检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信