{"title":"Cryptographic algorithm for multi-path distribution of entangled states of orbital angular momentum based on Fibonacci values","authors":"Hong Lai, Linchun Wan","doi":"10.1088/1612-202x/ad485b","DOIUrl":null,"url":null,"abstract":"\n Drawing inspiration from the Fibonacci sequence and its complementary Lucas sequence, this paper introduces an innovative encryption and decryption algorithm tailored for multi-path quantum key distribution. The algorithm capitalizes on the high-quality orbital angular momentum entangled states, harnessing the mathematical elegance of Fibonacci numbers to construct block diagonal matrices. These matrices serve as the foundation for the simultaneous execution of key distribution across multiple communication paths in a structured block distribution format. The encryption process is facilitated through a combination of linear mappings, employing specific transition matrices to manage the cryptographic flow. The security underpinning of this method is firmly rooted in the Heisenberg Uncertainty Principle, a fundamental tenet of quantum mechanics, which ensures the confidentiality and integrity of the quantum communication channel. This approach paves the way for a novel encryption paradigm, fortifying the security framework of quantum communication networks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad485b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Drawing inspiration from the Fibonacci sequence and its complementary Lucas sequence, this paper introduces an innovative encryption and decryption algorithm tailored for multi-path quantum key distribution. The algorithm capitalizes on the high-quality orbital angular momentum entangled states, harnessing the mathematical elegance of Fibonacci numbers to construct block diagonal matrices. These matrices serve as the foundation for the simultaneous execution of key distribution across multiple communication paths in a structured block distribution format. The encryption process is facilitated through a combination of linear mappings, employing specific transition matrices to manage the cryptographic flow. The security underpinning of this method is firmly rooted in the Heisenberg Uncertainty Principle, a fundamental tenet of quantum mechanics, which ensures the confidentiality and integrity of the quantum communication channel. This approach paves the way for a novel encryption paradigm, fortifying the security framework of quantum communication networks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.