{"title":"Almond (Prunus dulcis) varieties classification with genetic designed lightweight CNN architecture","authors":"Mustafa Yurdakul, İrfan Atabaş, Şakir Taşdemir","doi":"10.1007/s00217-024-04562-4","DOIUrl":null,"url":null,"abstract":"<div><p>Almond <i>(Prunus dulcis)</i> is a nutritious food with a rich content. In addition to consuming as food, it is also used for various purposes in sectors such as medicine, cosmetics and bioenergy. With all these usages, almond has become a globally demanded product. Accurately determining almond variety is crucial for quality assessment and market value. Convolutional Neural Network (CNN) has a great performance in image classification. In this study, a public dataset containing images of four different almond varieties was created. Five well-known and light-weight CNN models (DenseNet121, EfficientNetB0, MobileNet, MobileNet V2, NASNetMobile) were used to classify almond images. Additionally, a model called 'Genetic CNN', which has its hyperparameters determined by Genetic Algorithm, was proposed. Among the well-known and light-weight CNN models, NASNetMobile achieved the most successful result with an accuracy rate of 99.20%, precision of 99.21%, recall of 99.20% and f1-score of 99.19%. Genetic CNN outperformed well-known models with an accuracy rate of 99.55%, precision of 99.56%, recall of 99.55% and f1-score of 99.55%. Furthermore, the Genetic CNN model has a relatively small size and low test time in comparison to other models, with a parameter count of only 1.1 million. Genetic CNN is suitable for embedded and mobile systems and can be used in real-life solutions.</p></div>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"250 10","pages":"2625 - 2638"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00217-024-04562-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-024-04562-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Almond (Prunus dulcis) is a nutritious food with a rich content. In addition to consuming as food, it is also used for various purposes in sectors such as medicine, cosmetics and bioenergy. With all these usages, almond has become a globally demanded product. Accurately determining almond variety is crucial for quality assessment and market value. Convolutional Neural Network (CNN) has a great performance in image classification. In this study, a public dataset containing images of four different almond varieties was created. Five well-known and light-weight CNN models (DenseNet121, EfficientNetB0, MobileNet, MobileNet V2, NASNetMobile) were used to classify almond images. Additionally, a model called 'Genetic CNN', which has its hyperparameters determined by Genetic Algorithm, was proposed. Among the well-known and light-weight CNN models, NASNetMobile achieved the most successful result with an accuracy rate of 99.20%, precision of 99.21%, recall of 99.20% and f1-score of 99.19%. Genetic CNN outperformed well-known models with an accuracy rate of 99.55%, precision of 99.56%, recall of 99.55% and f1-score of 99.55%. Furthermore, the Genetic CNN model has a relatively small size and low test time in comparison to other models, with a parameter count of only 1.1 million. Genetic CNN is suitable for embedded and mobile systems and can be used in real-life solutions.
期刊介绍:
The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections:
-chemistry and biochemistry-
technology and molecular biotechnology-
nutritional chemistry and toxicology-
analytical and sensory methodologies-
food physics.
Out of the scope of the journal are:
- contributions which are not of international interest or do not have a substantial impact on food sciences,
- submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods,
- contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.