Almond (Prunus dulcis) varieties classification with genetic designed lightweight CNN architecture

IF 3 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Mustafa Yurdakul, İrfan Atabaş, Şakir Taşdemir
{"title":"Almond (Prunus dulcis) varieties classification with genetic designed lightweight CNN architecture","authors":"Mustafa Yurdakul,&nbsp;İrfan Atabaş,&nbsp;Şakir Taşdemir","doi":"10.1007/s00217-024-04562-4","DOIUrl":null,"url":null,"abstract":"<div><p>Almond <i>(Prunus dulcis)</i> is a nutritious food with a rich content. In addition to consuming as food, it is also used for various purposes in sectors such as medicine, cosmetics and bioenergy. With all these usages, almond has become a globally demanded product. Accurately determining almond variety is crucial for quality assessment and market value. Convolutional Neural Network (CNN) has a great performance in image classification. In this study, a public dataset containing images of four different almond varieties was created. Five well-known and light-weight CNN models (DenseNet121, EfficientNetB0, MobileNet, MobileNet V2, NASNetMobile) were used to classify almond images. Additionally, a model called 'Genetic CNN', which has its hyperparameters determined by Genetic Algorithm, was proposed. Among the well-known and light-weight CNN models, NASNetMobile achieved the most successful result with an accuracy rate of 99.20%, precision of 99.21%, recall of 99.20% and f1-score of 99.19%. Genetic CNN outperformed well-known models with an accuracy rate of 99.55%, precision of 99.56%, recall of 99.55% and f1-score of 99.55%. Furthermore, the Genetic CNN model has a relatively small size and low test time in comparison to other models, with a parameter count of only 1.1 million. Genetic CNN is suitable for embedded and mobile systems and can be used in real-life solutions.</p></div>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"250 10","pages":"2625 - 2638"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00217-024-04562-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-024-04562-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Almond (Prunus dulcis) is a nutritious food with a rich content. In addition to consuming as food, it is also used for various purposes in sectors such as medicine, cosmetics and bioenergy. With all these usages, almond has become a globally demanded product. Accurately determining almond variety is crucial for quality assessment and market value. Convolutional Neural Network (CNN) has a great performance in image classification. In this study, a public dataset containing images of four different almond varieties was created. Five well-known and light-weight CNN models (DenseNet121, EfficientNetB0, MobileNet, MobileNet V2, NASNetMobile) were used to classify almond images. Additionally, a model called 'Genetic CNN', which has its hyperparameters determined by Genetic Algorithm, was proposed. Among the well-known and light-weight CNN models, NASNetMobile achieved the most successful result with an accuracy rate of 99.20%, precision of 99.21%, recall of 99.20% and f1-score of 99.19%. Genetic CNN outperformed well-known models with an accuracy rate of 99.55%, precision of 99.56%, recall of 99.55% and f1-score of 99.55%. Furthermore, the Genetic CNN model has a relatively small size and low test time in comparison to other models, with a parameter count of only 1.1 million. Genetic CNN is suitable for embedded and mobile systems and can be used in real-life solutions.

Abstract Image

利用遗传设计的轻量级 CNN 架构进行杏仁(Prunus dulcis)品种分类
杏仁(Prunus dulcis)是一种营养丰富的食品。除了食用,它还被用于医药、化妆品和生物能源等领域。由于这些用途,杏仁已成为全球需求量最大的产品。准确确定杏仁品种对于质量评估和市场价值至关重要。卷积神经网络(CNN)在图像分类方面表现出色。本研究创建了一个公共数据集,其中包含四种不同杏仁品种的图像。五种著名的轻量级 CNN 模型(DenseNet121、EfficientNetB0、MobileNet、MobileNet V2、NASNetMobile)被用来对杏仁图像进行分类。此外,还提出了一种名为 "遗传 CNN "的模型,其超参数由遗传算法决定。在知名的轻量级 CNN 模型中,NASNetMobile 的准确率为 99.20%,精确率为 99.21%,召回率为 99.20%,f1 分数为 99.19%,取得了最成功的结果。Genetic CNN 的准确率为 99.55%,精确率为 99.56%,召回率为 99.55%,f1 分数为 99.55%,表现优于知名模型。此外,与其他模型相比,遗传 CNN 模型体积相对较小,测试时间较短,参数数仅为 110 万。遗传 CNN 适用于嵌入式和移动系统,可用于实际解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Food Research and Technology
European Food Research and Technology 工程技术-食品科技
CiteScore
6.60
自引率
3.00%
发文量
232
审稿时长
2.0 months
期刊介绍: The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections: -chemistry and biochemistry- technology and molecular biotechnology- nutritional chemistry and toxicology- analytical and sensory methodologies- food physics. Out of the scope of the journal are: - contributions which are not of international interest or do not have a substantial impact on food sciences, - submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods, - contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信