Investigating ion irradiation effects for modifying optical properties of CA/PANI films

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Reem Altuijri, E Abdeltwab, Nuha Al-Harbi, A. Atta, M. M. Abdel-Hamid, A. Henaish
{"title":"Investigating ion irradiation effects for modifying optical properties of CA/PANI films","authors":"Reem Altuijri, E Abdeltwab, Nuha Al-Harbi, A. Atta, M. M. Abdel-Hamid, A. Henaish","doi":"10.1680/jsuin.24.00014","DOIUrl":null,"url":null,"abstract":"In this study, flexible CA/PANI films, consisting of polyaniline (PANI) and cellulose acetate (CA), were created via a solution cast production process. Then, these films were irradiated using of handmade cold cathode ion device with argon fluence of 2x1017, 4x1017, and 6x1017 ions/cm2. The SRIM program was used to investigate the ion penetration depth, ion distribution in the composite and the energy stopping loss. Moreover, the FTIR technique was used to identify the changes of the treated CA/PANI. The UV-Vis technique was used to show the impact of argon beam on the optical characteristics of CA/PANI composite film. The oscillation energy (E0) dropped from 8.88 for CA/PANI to 7.83, 6.42, and 5.19 eV after exposed to 2x1017, 4x1017, and 6x1017 ions/cm2. The results showed that the ion altered the optical characteristics of the CA/PANI samples, which allow for applied these irradiated CA/PANI films in optoelectronic devices.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00014","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, flexible CA/PANI films, consisting of polyaniline (PANI) and cellulose acetate (CA), were created via a solution cast production process. Then, these films were irradiated using of handmade cold cathode ion device with argon fluence of 2x1017, 4x1017, and 6x1017 ions/cm2. The SRIM program was used to investigate the ion penetration depth, ion distribution in the composite and the energy stopping loss. Moreover, the FTIR technique was used to identify the changes of the treated CA/PANI. The UV-Vis technique was used to show the impact of argon beam on the optical characteristics of CA/PANI composite film. The oscillation energy (E0) dropped from 8.88 for CA/PANI to 7.83, 6.42, and 5.19 eV after exposed to 2x1017, 4x1017, and 6x1017 ions/cm2. The results showed that the ion altered the optical characteristics of the CA/PANI samples, which allow for applied these irradiated CA/PANI films in optoelectronic devices.
研究离子辐照对改变 CA/PANI 薄膜光学特性的影响
在这项研究中,通过溶液浇铸生产工艺制作了由聚苯胺(PANI)和醋酸纤维素(CA)组成的柔性 CA/PANI 薄膜。然后,使用手工制作的冷阴极离子装置,以 2x1017、4x1017 和 6x1017 离子/cm2 的氩离子流对这些薄膜进行辐照。利用 SRIM 程序研究了离子穿透深度、复合材料中的离子分布以及能量阻挡损失。此外,还利用傅立叶变换红外技术确定了经处理的 CA/PANI 的变化。紫外可见光技术用于显示氩气束对 CA/PANI 复合薄膜光学特性的影响。在暴露于 2x1017、4x1017 和 6x1017 离子/cm2 后,CA/PANI 的振荡能 (E0) 从 8.88 下降到 7.83、6.42 和 5.19 eV。结果表明,离子改变了 CA/PANI 样品的光学特性,因此可以将这些经过辐照的 CA/PANI 薄膜应用于光电设备中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Innovations
Surface Innovations CHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍: The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace. Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信