{"title":"Development and Application of Cationic Nile Blue Probes in Live-Cell Super-Resolution Imaging and Specific Targeting to Mitochondria","authors":"Yunsheng Li, Xiaoyu Bai and Dan Yang*, ","doi":"10.1021/acscentsci.4c00073","DOIUrl":null,"url":null,"abstract":"<p >Mitochondria are essential organelles involved in various metabolic processes in eukaryotes. The imaging, targeting, and investigation of cell death mechanisms related to mitochondria have garnered significant interest. Small-molecule fluorescent probes have proven to be robust tools for utilizing light to advance the study of mitochondrial biology. In this study, we present the rational design of cationic Nile blue probes carrying a permanent positive charge for these purposes. The cationic Nile blue probes exhibit excellent mitochondrial permeability, unique solvatochromism, and resistance to oxidation. We observed weaker fluorescence in aqueous solutions compared to lipophilic solvents, thereby minimizing background fluorescence in the cytoplasm. Additionally, we achieved photoredox switching of the cationic Nile blue probes under mild conditions. This enabled us to demonstrate their application for the first time in single-molecule localization microscopy of mitochondria, allowing us to observe mitochondrial fission and fusion behaviors. Compared to conventional cyanine fluorophores, this class of dyes demonstrated prolonged resistance to photobleaching, likely due to their antioxidation properties. Furthermore, we extended the application of cationic Nile blue probes to the mitochondria-specific delivery of taxanes, facilitating the study of direct interactions between the drug and organelles. Our approach to triggering cell death without reliance on microtubule binding provides valuable insights into anticancer drug research and drug-resistance mechanisms.</p><p >Fluorescent cationic Nile blue probes were developed for SMLM imaging of mitochondria in living cells and the specific targeting of the antitumor drug paclitaxel into mitochondria.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 6","pages":"1221–1230"},"PeriodicalIF":10.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c00073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c00073","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are essential organelles involved in various metabolic processes in eukaryotes. The imaging, targeting, and investigation of cell death mechanisms related to mitochondria have garnered significant interest. Small-molecule fluorescent probes have proven to be robust tools for utilizing light to advance the study of mitochondrial biology. In this study, we present the rational design of cationic Nile blue probes carrying a permanent positive charge for these purposes. The cationic Nile blue probes exhibit excellent mitochondrial permeability, unique solvatochromism, and resistance to oxidation. We observed weaker fluorescence in aqueous solutions compared to lipophilic solvents, thereby minimizing background fluorescence in the cytoplasm. Additionally, we achieved photoredox switching of the cationic Nile blue probes under mild conditions. This enabled us to demonstrate their application for the first time in single-molecule localization microscopy of mitochondria, allowing us to observe mitochondrial fission and fusion behaviors. Compared to conventional cyanine fluorophores, this class of dyes demonstrated prolonged resistance to photobleaching, likely due to their antioxidation properties. Furthermore, we extended the application of cationic Nile blue probes to the mitochondria-specific delivery of taxanes, facilitating the study of direct interactions between the drug and organelles. Our approach to triggering cell death without reliance on microtubule binding provides valuable insights into anticancer drug research and drug-resistance mechanisms.
Fluorescent cationic Nile blue probes were developed for SMLM imaging of mitochondria in living cells and the specific targeting of the antitumor drug paclitaxel into mitochondria.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.