{"title":"Porous graphene with high porosity derived from nitrogen-doped graphene aerogel for vapor adsorption and lithium–sulfur batteries","authors":"Tianrui Liu, Qingchao Zhao, Haotian Zhou, Songtong Zhang, Yongpeng Li, Zhuyin Sui","doi":"10.1007/s10934-024-01635-3","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene-based aerogels have garnered significant attention due to their combined advantages derived from both graphene and aerogels. Nevertheless, a key limitation in their practical applications arises from their relatively modest specific surface area and pore volume. In this study, porous graphene materials with high porosity are synthesized through the physical and chemical activation of nitrogen-doped graphene aerogel (NGA) using carbon dioxide and KOH as activating agents. The carbon dioxide-activated NGA (CNGA) maintains the spongy aerogel structure and exhibits a hierarchical porous structure encompassing micropores, mesopores, and macropores. Notably, CNGA exhibits a high specific surface area (2030 m<sup>2</sup> g<sup>–1</sup>) and pore volume (5.4 cm<sup>3</sup> g<sup>–1</sup>). Given its intriguing properties, the CNGA porous material shows exceptional adsorption capabilities for toluene (2625 mg g<sup>–1</sup>) and methanol (2091 mg g<sup>–1</sup>) under saturated vapor pressure conditions, making it possible to serve as an efficient gas adsorbent. Furthermore, the CNGA as a sulfur host for lithium–sulfur battery demonstrates good cycling performance, retaining a discharge specific capacity of 719.6 mA h g<sup>–1</sup> even after 200 cycles at a rate of 0.5 C.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1753 - 1762"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01635-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene-based aerogels have garnered significant attention due to their combined advantages derived from both graphene and aerogels. Nevertheless, a key limitation in their practical applications arises from their relatively modest specific surface area and pore volume. In this study, porous graphene materials with high porosity are synthesized through the physical and chemical activation of nitrogen-doped graphene aerogel (NGA) using carbon dioxide and KOH as activating agents. The carbon dioxide-activated NGA (CNGA) maintains the spongy aerogel structure and exhibits a hierarchical porous structure encompassing micropores, mesopores, and macropores. Notably, CNGA exhibits a high specific surface area (2030 m2 g–1) and pore volume (5.4 cm3 g–1). Given its intriguing properties, the CNGA porous material shows exceptional adsorption capabilities for toluene (2625 mg g–1) and methanol (2091 mg g–1) under saturated vapor pressure conditions, making it possible to serve as an efficient gas adsorbent. Furthermore, the CNGA as a sulfur host for lithium–sulfur battery demonstrates good cycling performance, retaining a discharge specific capacity of 719.6 mA h g–1 even after 200 cycles at a rate of 0.5 C.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.