Dynamics analysis of a nonlinear energy sink for passive suppression of a parametrically excited system

IF 1.9 3区 工程技术 Q3 MECHANICS
Guilherme Rosa Franzini, Pierpaolo Belardinelli, Stefano Lenci
{"title":"Dynamics analysis of a nonlinear energy sink for passive suppression of a parametrically excited system","authors":"Guilherme Rosa Franzini,&nbsp;Pierpaolo Belardinelli,&nbsp;Stefano Lenci","doi":"10.1007/s11012-024-01812-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlinear energy sinks (NESs) have been extensively studied to develop passive suppression strategies, with the primary objective of minimizing hazardous oscillatory responses in structures. In this work, we investigate the dynamical regimes of a parametrically excited one-degree-of-freedom system with a rotary NES (RNES) acting as a passive suppressor. By performing numerical pseudo-arclength continuations we determine the comprehensive local bifurcation scenario and illustrate, through locus maps, the impact of various RNES parameters. We identify configurations of the parametric excitation amplitude, mass, and absorber radius that result in stable vibration ranges. The dynamic scenario necessitates a precise adjustment of the RNES characteristics, tailored for either passive suppression or energy harvesting applications. Finally, we assess the resilience of the suitable vibration regions by examining the global dynamics. Basins of attraction display a fractal form, indicating a high sensitivity of the response to initial conditions.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 5","pages":"703 - 715"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01812-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear energy sinks (NESs) have been extensively studied to develop passive suppression strategies, with the primary objective of minimizing hazardous oscillatory responses in structures. In this work, we investigate the dynamical regimes of a parametrically excited one-degree-of-freedom system with a rotary NES (RNES) acting as a passive suppressor. By performing numerical pseudo-arclength continuations we determine the comprehensive local bifurcation scenario and illustrate, through locus maps, the impact of various RNES parameters. We identify configurations of the parametric excitation amplitude, mass, and absorber radius that result in stable vibration ranges. The dynamic scenario necessitates a precise adjustment of the RNES characteristics, tailored for either passive suppression or energy harvesting applications. Finally, we assess the resilience of the suitable vibration regions by examining the global dynamics. Basins of attraction display a fractal form, indicating a high sensitivity of the response to initial conditions.

Abstract Image

用于参数激励系统被动抑制的非线性能量汇的动力学分析
为了开发被动抑制策略,人们对非线性能量汇(NES)进行了广泛的研究,其主要目的是最大限度地减少结构中的危险振荡响应。在这项工作中,我们研究了一个参数激励单自由度系统的动力学机制,其中旋转非线性能量汇(RNES)充当了被动抑制器。通过进行数值伪arclength延续,我们确定了全面的局部分岔情况,并通过位置图说明了各种RNES参数的影响。我们确定了参数激励振幅、质量和吸收器半径的配置,从而实现稳定的振动范围。在动态情况下,有必要针对被动抑制或能量收集应用对 RNES 特性进行精确调整。最后,我们通过研究全球动态来评估合适振动区域的弹性。吸引盆地显示出分形形式,表明响应对初始条件高度敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信