{"title":"Review: Deep Learning-Based Survival Analysis of Omics and Clinicopathological Data","authors":"Julia Sidorova, Juan Jose Lozano","doi":"10.3390/inventions9030059","DOIUrl":null,"url":null,"abstract":"The 2017–2024 period has been prolific in the area of the algorithms for deep-based survival analysis. We have searched the answers to the following three questions. (1) Is there a new “gold standard” already in clinical data analysis? (2) Does the DL component lead to a notably improved performance? (3) Are there tangible benefits of deep-based survival that are not directly attainable with non-deep methods? We have analyzed and compared the selected influential algorithms devised for two types of input: clinicopathological (a small set of numeric, binary and categorical) and omics data (numeric and extremely high dimensional with a pronounced p >> n complication).","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions9030059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The 2017–2024 period has been prolific in the area of the algorithms for deep-based survival analysis. We have searched the answers to the following three questions. (1) Is there a new “gold standard” already in clinical data analysis? (2) Does the DL component lead to a notably improved performance? (3) Are there tangible benefits of deep-based survival that are not directly attainable with non-deep methods? We have analyzed and compared the selected influential algorithms devised for two types of input: clinicopathological (a small set of numeric, binary and categorical) and omics data (numeric and extremely high dimensional with a pronounced p >> n complication).