{"title":"Controls on the Genesis of a Giant Sand Injection Complex. Insights on the Palaeogene Evolution of the Stress of Northern and Central California","authors":"M. Vigorito, A. Grippa, R. H. T. Callow","doi":"10.1144/jgs2024-001","DOIUrl":null,"url":null,"abstract":"\n Giant sand injection complexes and localized swarms of sandstone intrusions are common in Upper Cretaceous to Miocene sedimentary successions of the Central and Northern California within a distance of less than 100 km from the Pacific margin of the North America Plate. One of the best preserved and extensively exposed injection complexes is the late Eocene Tumey Giant Injection Complex. The emplacement of sand injectites was driven by overpressure generated by thermal diagenesis of biosiliceous and smectite-rich mudstone host-rocks. The orientation and size distribution of sandstone intrusions was controlled by stress in which\n \n \n σ\n \n \n 1\n and\n \n \n σ\n \n \n 3\n were horizontal and, respectively, parallel and perpendicular to the present trace of the San Andreas Fault, and\n \n \n σ\n \n \n 2\n was vertical. A strike-slip tectonic regime is inferred. Our analysis documents margin orthogonal extension and draws support for a late Eocene phase of increase of strain, and possibly active slip, along a syn-subduction strike-slip fault zone. Comparison with other injection complexes in the region indicates that the near-field maximum principal stress rotated through time, from normal to parallel with respect to the plate margin, probably in relation to variations of the relative motion vector of the converging plates.\n","PeriodicalId":17320,"journal":{"name":"Journal of the Geological Society","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Geological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/jgs2024-001","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Giant sand injection complexes and localized swarms of sandstone intrusions are common in Upper Cretaceous to Miocene sedimentary successions of the Central and Northern California within a distance of less than 100 km from the Pacific margin of the North America Plate. One of the best preserved and extensively exposed injection complexes is the late Eocene Tumey Giant Injection Complex. The emplacement of sand injectites was driven by overpressure generated by thermal diagenesis of biosiliceous and smectite-rich mudstone host-rocks. The orientation and size distribution of sandstone intrusions was controlled by stress in which
σ
1
and
σ
3
were horizontal and, respectively, parallel and perpendicular to the present trace of the San Andreas Fault, and
σ
2
was vertical. A strike-slip tectonic regime is inferred. Our analysis documents margin orthogonal extension and draws support for a late Eocene phase of increase of strain, and possibly active slip, along a syn-subduction strike-slip fault zone. Comparison with other injection complexes in the region indicates that the near-field maximum principal stress rotated through time, from normal to parallel with respect to the plate margin, probably in relation to variations of the relative motion vector of the converging plates.
期刊介绍:
Journal of the Geological Society (JGS) is owned and published by the Geological Society of London.
JGS publishes topical, high-quality recent research across the full range of Earth Sciences. Papers are interdisciplinary in nature and emphasize the development of an understanding of fundamental geological processes. Broad interest articles that refer to regional studies, but which extend beyond their geographical context are also welcomed.
Each year JGS presents the ‘JGS Early Career Award'' for papers published in the journal, which rewards the writing of well-written, exciting papers from early career geologists.
The journal publishes research and invited review articles, discussion papers and thematic sets.