Se Inter-Diffusion Limits Absorber Layer Grain Growth in Cd

T.F.S. Altamimi, J.F. Leaver, K. Durose, J.D. Major, B. Mendis
{"title":"<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:mi>Se</mml:mi></mml:math>\n Inter-Diffusion Limits Absorber Layer Grain Growth in \n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:mrow><mml:mi>Cd</mml:mi>","authors":"T.F.S. Altamimi, J.F. Leaver, K. Durose, J.D. Major, B. Mendis","doi":"10.1103/prxenergy.3.023002","DOIUrl":null,"url":null,"abstract":"Diffusion of Se from the CdSe window layer into the CdTe absorber improves the short circuit current density by narrowing the band gap and increasing the carrier lifetime. Thicker CdSe layers, however, show a dramatic loss in photocurrent collection due to Se over-alloying. Electron microscopy investigations show that this decrease in performance is due to the formation of small grains (∼783 nm average diameter), which exhibit grain boundary porosity in the Se inter-diffusion region. The larger grain boundary area and void free surfaces give rise to higher levels of nonradiative recombination, and therefore, a lower photocurrent. It is proposed that the small grain size is due to a drag force exerted by segregated Se solute atoms on a moving grain boundary, while faster Se diffusion along the grain boundaries results in vacancy build up and porosity due to the Kirkendall effect. The results indicate that the device processing conditions must be carefully controlled such that the negative effects of Se alloying (i.e., smaller grains, Kirkendall voids) do not undermine its benefits.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":311086,"journal":{"name":"PRX Energy","volume":"18 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxenergy.3.023002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion of Se from the CdSe window layer into the CdTe absorber improves the short circuit current density by narrowing the band gap and increasing the carrier lifetime. Thicker CdSe layers, however, show a dramatic loss in photocurrent collection due to Se over-alloying. Electron microscopy investigations show that this decrease in performance is due to the formation of small grains (∼783 nm average diameter), which exhibit grain boundary porosity in the Se inter-diffusion region. The larger grain boundary area and void free surfaces give rise to higher levels of nonradiative recombination, and therefore, a lower photocurrent. It is proposed that the small grain size is due to a drag force exerted by segregated Se solute atoms on a moving grain boundary, while faster Se diffusion along the grain boundaries results in vacancy build up and porosity due to the Kirkendall effect. The results indicate that the device processing conditions must be carefully controlled such that the negative effects of Se alloying (i.e., smaller grains, Kirkendall voids) do not undermine its benefits. Published by the American Physical Society 2024
硒的相互扩散限制了镉中吸收层晶粒的生长
硒从碲化镉窗口层扩散到碲化镉吸收体中,缩小了带隙并延长了载流子寿命,从而提高了短路电流密度。然而,由于硒的过度合金化,较厚的硒化镉层在光电流收集方面出现了急剧下降。电子显微镜研究表明,性能下降的原因是形成了小晶粒(平均直径 ∼ 783 nm),这些小晶粒在 Se 间扩散区域表现出晶界多孔性。较大的晶界面积和无空隙表面会导致更高水平的非辐射重组,从而降低光电流。有人提出,晶粒尺寸小是由于分离的硒溶质原子对移动的晶界施加了阻力,而沿晶界的硒扩散速度较快会导致空位堆积和柯肯达尔效应引起的孔隙率。研究结果表明,必须仔细控制器件的加工条件,以免硒合金化的负面影响(即晶粒变小、Kirkendall空洞)损害其益处。 美国物理学会出版 2024
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信