Reem Altuijri, M. M. Abdelhamied, A. Atta, Nuha Al-Harbi, A. Henaish
{"title":"Enhancing the dielectric characteristics of argon beam irradiated polymer composite films","authors":"Reem Altuijri, M. M. Abdelhamied, A. Atta, Nuha Al-Harbi, A. Henaish","doi":"10.1680/jsuin.24.00003","DOIUrl":null,"url":null,"abstract":"In this study, the casting prepration technique is applied to produce flexible CA/PANI composite films. The CA/PANI samples which are composed of polyaniline (PANI) and cellulose acetate (CA) are directed to applied in electrical storage devices. The XRD, FTIR, TEM, Ramman and SEM techniques were employed for analyzing the produced films. The TEM show the PANI were formed with the particle size less than 100 nm. Next, argon-ion beam with varying fluencies (4x1014, 8x1014 and 12x1014 ions/cm2) bombard the CA/PANI samples. In frequency of 20 Hz to 5.5 MHz, the dielectric properties of CA/PANI were significantly altered by argon beam treatment. The irradiated sample by 12x1014 ions/cm−2 at frequency 50 Hz resulted in an improvement in the dielectric constant ε′ from 36.4 for the unirradiated CA/PANI to 108.6. Additionally, the relaxation time decreased from 1.63x10−4 sec to 2.08x10−5 sec. The results of this work open the ways for using the irradiated CA/PANI in a number of devices, such as supercapacitors and batteries.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"102 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the casting prepration technique is applied to produce flexible CA/PANI composite films. The CA/PANI samples which are composed of polyaniline (PANI) and cellulose acetate (CA) are directed to applied in electrical storage devices. The XRD, FTIR, TEM, Ramman and SEM techniques were employed for analyzing the produced films. The TEM show the PANI were formed with the particle size less than 100 nm. Next, argon-ion beam with varying fluencies (4x1014, 8x1014 and 12x1014 ions/cm2) bombard the CA/PANI samples. In frequency of 20 Hz to 5.5 MHz, the dielectric properties of CA/PANI were significantly altered by argon beam treatment. The irradiated sample by 12x1014 ions/cm−2 at frequency 50 Hz resulted in an improvement in the dielectric constant ε′ from 36.4 for the unirradiated CA/PANI to 108.6. Additionally, the relaxation time decreased from 1.63x10−4 sec to 2.08x10−5 sec. The results of this work open the ways for using the irradiated CA/PANI in a number of devices, such as supercapacitors and batteries.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.