Protein disulfide isomerase-9 interacts with the lumenal region of the transmembrane endoplasmic reticulum stress sensor kinase, IRE1, to modulate the unfolded protein response in Arabidopsis

R. Carrillo, Kaela Iwai, Alena Albertson, Gabrielle Dang, David A. Christopher
{"title":"Protein disulfide isomerase-9 interacts with the lumenal region of the transmembrane endoplasmic reticulum stress sensor kinase, IRE1, to modulate the unfolded protein response in Arabidopsis","authors":"R. Carrillo, Kaela Iwai, Alena Albertson, Gabrielle Dang, David A. Christopher","doi":"10.3389/fpls.2024.1389658","DOIUrl":null,"url":null,"abstract":"Environmental stressors disrupt secretory protein folding and proteostasis in the endoplasmic reticulum (ER), leading to ER stress. The unfolded protein response (UPR) senses ER stress and restores proteostasis by increasing the expression of ER-resident protein folding chaperones, such as protein disulfide isomerases (PDIs). In plants, the transmembrane ER stress sensor kinase, IRE1, activates the UPR by unconventionally splicing the mRNA encoding the bZIP60 transcription factor, triggering UPR gene transcription. The induced PDIs catalyze disulfide-based polypeptide folding to restore the folding capacity in the ER; however, the substrates with which PDIs interact are largely unknown. Here, we demonstrate that the Arabidopsis PDI-M subfamily member, PDI9, modulates the UPR through interaction with IRE1. This PDI9–IRE1 interaction was largely dependent on Cys63 in the first dithiol redox active domain of PDI9, and Cys233 and Cys107 in the ER lumenal domain of IRE1A and IRE1B, respectively. In vitro and in vivo, PDI9 coimmunoprecipitated with IRE1A and IRE1B. Moreover, the PDI9:RFP and Green Fluorescence Protein (GFP):IRE1 fusions exhibited strong interactions as measured by fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) when coexpressed in mesophyll protoplasts. The UPR-responsive PDI9 promoter:mCherry reporter and the UPR-dependent splicing of the bZIP60 intron from the mRNA of the 35S::bZIP60-intron:GFP reporter were both significantly induced in the pdi9 mutants, indicating a derepression and hyperactivation of UPR. The inductions of both reporters were substantially attenuated in the ire1a–ire1b mutant. We propose a model in which PDI9 modulates the UPR through two competing activities: secretory protein folding and via interaction with IRE1 to maintain proteostasis in plants.","PeriodicalId":505607,"journal":{"name":"Frontiers in Plant Science","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1389658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental stressors disrupt secretory protein folding and proteostasis in the endoplasmic reticulum (ER), leading to ER stress. The unfolded protein response (UPR) senses ER stress and restores proteostasis by increasing the expression of ER-resident protein folding chaperones, such as protein disulfide isomerases (PDIs). In plants, the transmembrane ER stress sensor kinase, IRE1, activates the UPR by unconventionally splicing the mRNA encoding the bZIP60 transcription factor, triggering UPR gene transcription. The induced PDIs catalyze disulfide-based polypeptide folding to restore the folding capacity in the ER; however, the substrates with which PDIs interact are largely unknown. Here, we demonstrate that the Arabidopsis PDI-M subfamily member, PDI9, modulates the UPR through interaction with IRE1. This PDI9–IRE1 interaction was largely dependent on Cys63 in the first dithiol redox active domain of PDI9, and Cys233 and Cys107 in the ER lumenal domain of IRE1A and IRE1B, respectively. In vitro and in vivo, PDI9 coimmunoprecipitated with IRE1A and IRE1B. Moreover, the PDI9:RFP and Green Fluorescence Protein (GFP):IRE1 fusions exhibited strong interactions as measured by fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) when coexpressed in mesophyll protoplasts. The UPR-responsive PDI9 promoter:mCherry reporter and the UPR-dependent splicing of the bZIP60 intron from the mRNA of the 35S::bZIP60-intron:GFP reporter were both significantly induced in the pdi9 mutants, indicating a derepression and hyperactivation of UPR. The inductions of both reporters were substantially attenuated in the ire1a–ire1b mutant. We propose a model in which PDI9 modulates the UPR through two competing activities: secretory protein folding and via interaction with IRE1 to maintain proteostasis in plants.
二硫化钼异构酶-9 与跨膜内质网应激感应激酶 IRE1 的管腔区相互作用,调节拟南芥中的未折叠蛋白反应
环境应激因素会破坏内质网(ER)中分泌蛋白的折叠和蛋白稳态,从而导致ER应激。未折叠蛋白反应(UPR)会感知ER压力,并通过增加ER驻留蛋白折叠伴侣(如蛋白二硫异构酶(PDI))的表达来恢复蛋白稳态。在植物中,跨膜ER应激感应激酶IRE1通过非传统地剪接编码bZIP60转录因子的mRNA,触发UPR基因转录,从而激活UPR。被诱导的 PDIs 催化基于二硫化物的多肽折叠,以恢复 ER 中的折叠能力;然而,PDIs 与之相互作用的底物在很大程度上是未知的。在这里,我们证明拟南芥 PDI-M 亚家族成员 PDI9 通过与 IRE1 相互作用调节 UPR。PDI9 与 IRE1 的相互作用主要依赖于 PDI9 第一个二硫醇氧化还原活性结构域中的 Cys63,以及 IRE1A 和 IRE1B 的 ER 管腔结构域中的 Cys233 和 Cys107。在体外和体内,PDI9 与 IRE1A 和 IRE1B 共沉淀。此外,通过荧光寿命成像显微镜-荧光共振能量转移(FLIM-FRET)测量,PDI9:RFP 和绿色荧光蛋白(GFP):IRE1 融合体在叶绿体原生质体中共表达时表现出很强的相互作用。在 pdi9 突变体中,UPR 响应的 PDI9 启动子:mCherry 报告子和 UPR 依赖性的 bZIP60 内含子从 35S::bZIP60-intron:GFP 报告子的 mRNA 中剪接,均被显著诱导,表明 UPR 被抑制和过度激活。而在 ire1a-ire1b 突变体中,两种报告基因的诱导作用都大大减弱。我们提出了一个模型,其中 PDI9 通过两种相互竞争的活动调节 UPR:分泌蛋白折叠和通过与 IRE1 相互作用维持植物体内的蛋白稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信