Amanda Langørgen, Lasse Vines, Y. Kalmann Frodason
{"title":"Perspective on electrically active defects in β-Ga2O3 from deep-level transient spectroscopy and first-principles calculations","authors":"Amanda Langørgen, Lasse Vines, Y. Kalmann Frodason","doi":"10.1063/5.0205950","DOIUrl":null,"url":null,"abstract":"The ultra-wide bandgap of gallium oxide provides a rich plethora of electrically active defects. Understanding and controlling such defects is of crucial importance in mature device processing. Deep-level transient spectroscopy is one of the most sensitive techniques for measuring electrically active defects in semiconductors and, hence, a key technique for progress toward gallium oxide-based components, including Schottky barrier diodes and field-effect transistors. However, deep-level transient spectroscopy does not provide chemical or configurational information about the defect signature and must, therefore, be combined with other experimental techniques or theoretical modeling to gain a deeper understanding of the defect physics. Here, we discuss the current status regarding the identification of electrically active defects in beta-phase gallium oxide, as observed by deep-level transient spectroscopy and supported by first-principles defect calculations based on the density functional theory. We also discuss the coordinated use of the experiment and theory as a powerful approach for studying electrically active defects and highlight some of the interesting but challenging issues related to the characterization and control of defects in this fascinating material.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0205950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ultra-wide bandgap of gallium oxide provides a rich plethora of electrically active defects. Understanding and controlling such defects is of crucial importance in mature device processing. Deep-level transient spectroscopy is one of the most sensitive techniques for measuring electrically active defects in semiconductors and, hence, a key technique for progress toward gallium oxide-based components, including Schottky barrier diodes and field-effect transistors. However, deep-level transient spectroscopy does not provide chemical or configurational information about the defect signature and must, therefore, be combined with other experimental techniques or theoretical modeling to gain a deeper understanding of the defect physics. Here, we discuss the current status regarding the identification of electrically active defects in beta-phase gallium oxide, as observed by deep-level transient spectroscopy and supported by first-principles defect calculations based on the density functional theory. We also discuss the coordinated use of the experiment and theory as a powerful approach for studying electrically active defects and highlight some of the interesting but challenging issues related to the characterization and control of defects in this fascinating material.